Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 31

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

W.D. (1947b). The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc. 67: 683–688.

      65 65 Lange, H. (1950). Application of the law of mass action to micelle formation in colloidal electrolytes. Kolloidn. Zh. 117: 48–51.

      66 66 Hall, D.G. (1981). Thermodynamics of solutions of polyelectrolytes, ionic surfactants, and other charged colloidal system. J. Chem. Soc. Faraday Trans. 1 (77): 1121–1156.

      67 67 Corrin, M.L. and Harkins, W.D. (1946a). The effect of solvents on the critical concentration for micelle formation of cationic soaps. J. Chem. Phys. 14: 640–641.

      68 68 Herzfeld, S.H., Corrin, M.L., and Harkins, W.D. (1950). The the effect of alcohols and of alcohols and salts on the critical micelle concentration of dodecylammonium chloride. J. Phys. Colloid Chem. 54: 271–283.

      69 69 Reichenberg, D. (1947). Colloidal crystallites and micelles. I. The micelle in solution. Apparent anomalies in the surface‐ and interfacial‐tension‐concentration curves of aqueous solutions of paraffin‐chain salts. Trans. Faraday Soc. 43: 467–479.

      70 70 Klevens, H.B. (1947a). Effects of temperature on the critical concentrations of anionic and cationic detergents. J. Phys. Chem. 51: 1143–1154.

      71 71 Klevens, H.B. (1947b). Effect of temperature on micelle formation as determined by refraction. J. Colloid Sci. 2: 301–303.

      72 72 Sheppard, S.E. and Geddes, A.L. (1945). Amphipathic character of proteins and certain lyophile colloids as indicated by absorption spectra of dyes. J. Chem. Phys. 13: 63.

      73 73 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946). Critical concentration for the formation of micelles as indicated by the absorption spectrum of a cyanine dye. J. Chem. Phys. 14: 216–217.

      74 74 Klevens, H.B. (1946). The critical micelle concentration of anionic soap mixtures. J. Chem. Phys. 14: 742.

      75 75 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946.a). The determination of critical concentrations for the formation of soap micelles by the spectral behavior of pinacyanol chloride. J. Chem. Phys. 14: 480–486.

      76 76 Kolthoff, I.M. and Johnson, W.F. (1946). Solubilization of p‐dimethylaminoazobenzene in soap solutions. J. Phys. Chem. 50: 440–442.

      77 77 Corrin, M.L. and Harkins, W.D. (1946). Determination of critical concentrations for micelle formation in solutions of cationic soaps by changes in the color and fluorescence of dyes. J. Chem. Phys. 14: 641.

      78 78 Corrin, M.L. and Harkins, W.D. (1947). Determination of the critical concentration for micelle formation in solutions of colloidal electrolytes by the spectral change of a dye. J. Am. Chem. Soc. 69: 679–683.

      79 79 Klevens, H.B. (1950). Solubilization of polycyclic hydrocarbons. J. Phys. Colloid Chem. 54: 283–298.

      80 80 Ekwall, P. (1951). Micelle formation in sodium cholate solutions. Acta Acad. Abo., Ser. B 17: 1–10.

      81 81 Foerster, T. and Selinger, B. (1964). Concentration change of the fluorescence of aromatic hydrocarbons in micellar colloidal solution. Z. Naturforsch. 19a: 38–41.

      82 82 Dorrance, R.C. and Hunter, T.F. (1974). Absorption and emission studies of solubilization in micelles. 2. Determination of aggregation numbers and solubilizate diffusion in cationic micelles. J. Chem. Soc. Faraday Trans. 1 (70): 1572–1580.

      83 83 Chen, M. and Graetzel, J.K. (1974). Thomas, photochemical reactions in micelles of biological importance. Chem. Phys. Lett. 24.

      84 84 Geiger, M.W. and Turro, N.J. (1975). Pyrene fluorescence lifetime as a probe for oxygen penetration of micelles. Photochem. Photobiol. 22: 273–276.

      85 85 Kalyanasundaram, K. and Thomas, J.K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99: 2039–2044.

      86 86 Nakajima, A. (1977). Variations in the vibrational structures of fluorescence spectra of naphthalene and pyrene in water and in aqueous surfactant solutions. Bull. Chem. Soc. Jpn. 50: 2473–2474.

      87 87 Acharya, D.P., Kunieda, H., Shiba, Y., and Aratani, K. (2004). Phase and rheological behavior of novel gemini‐type surfactant systems. J. Phys. Chem. B 108: 1790–1797.

      88 88 Jover, A., Meijide, F., Rodríguez Núñez, E. et al. (1996). Unusual pyrene excimer formation during sodium deoxycholate gelation. Langmuir 12: 1789–1793.

      89 89 Hashimoto, S. and Thomas, J.K. (1984). Photophysical studies of pyrene in micellar sodium taurocholate at high salt concentrations. J. Colloid Interface Sci. 102: 152–163.

      90 90 Andersson, B. and Olofsson, G. (1988). Calorimetric study of nonionic surfactants: enthalpies and heat‐capacity changes for micelle formation in water of C8E4 and Triton X‐100 and micelle size of C8E4. J. Chem. Soc. Faraday Trans. 1 (84): 4087–4095.

      91 91 Chung, H.S. and Heilweil, I.J. (1970). Statistical treatment of micellar solutions. J. Phys. Chem. 74: 488–494.

      92 92 Paula, S., Sues, W., Tuchtenhagen, J., and Blume, A. (1995). Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. J. Phys. Chem. 99: 11742–11751.

      93 93 Aguiar, J., Carpena, P., Molina‐Bolivar, J.A., and Carnero Ruiz, C. (2003). On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258: 116–122.

      94 94 Rusanov, A.I. (1993). The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 45: 1–78.

      95 95 Phillips, J.N. (1955). Energetics of micelle formation. Trans. Faraday Soc. 51: 561–569.

      96 96 Olesen, N.E., Holm, R., and Westh, P. (2015). Determination of the aggregation number for micelles by isothermal titration calorimetry. Thermochim. Acta 588: 28–37.

      97 97 Olofsson, G. and Loh, W. (2009). The use of titration calorimetry to study the association of surfactants in aqueous solutions. J. Braz. Chem. Soc. 20: 577–593.

      98 98 Hall, D.G. (1972). Exact phenomenological interpretation of the micelle point in multicomponent systems. J. Chem. Soc. Faraday Trans. 2 (68): 668–679.

      99 99 Goodeve, C.F. (1935). General discussion on “equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts. Discussion on equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts”. Trans. Faraday Soc. 31: 197–198.

      100 100 Vázquez‐Tato, M.P., Meijide, F., Seijas, J.A. et al. (2018). Analysis of an old controversy: The compensation temperature for micellization of surfactants. Adv. Colloid Interface Sci. 254: 94–98.

      101 101 Gill, S.J., Nichols, N.F., and Wadsö, I. (1976). Calorimetric determination of enthalpies of solution of slightly soluble liquids. II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J. Chem. Thermodyn. 8: 445–452.

      102 102 Gill, S.J., Dec, S.F., Olofsson, G., and Wadsö, I. (1985). Anomalous heat capacity of hydrophobic solvation. J. Phys. Chem. 89: 3758–3761.

      103 103 Crutzen, J.L., Hasse, R., and Sieg, L. (1950). Vapor equilibrium and heat of mixing in the systems cyclohexane‐heptane and methylcyclohexane‐heptane.

Скачать книгу