Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 34

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

Langmuir 13: 4562–4568.

      186 186 Tyrode, E., Johnson, C.M., Kumpulainen, A. et al. (2005). Hydration state of nonionic surfactant monolayers at the liquid/vapor interface: Structure determination by vibrational sum frequency spectroscopy. J. Am. Chem. Soc. 127: 16848–16859.

      187 187 Tyrode, E., Johnson, C.M., Rutland, M.W., and Claesson, P.M. (2007). Structure and hydration of poly(ethylene oxide) surfactants at the air /liquid interface. A vibrational sum frequency spectroscopy study. J. Phys. Chem. C 111: 11642–11652.

      188 188 Kumpulainen, A.J., Persson, C.M., Eriksson, J.C. et al. (2005). Soluble monolayers of n‐decyl glucopyranoside and n‐decyl maltopyranoside. Phase changes in the gaseous to the liquid‐expanded range. Langmuir 21: 305–315.

      189 189 Gorin, P.A.J., Spencer, J.F.T., and Tulloch, A.P. (1961). Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem. 39: 846–855.

      190 190 Ozdener, M.H., Ashby, R.D., Jyotaki, M. et al. (2019). Sophorolipid biosurfactants activate taste receptor type 1 member 3‐mediated taste responses and block responses to bitter taste in vitro; and in vivo. J. Surfactant Deterg. 22: 441–449.

      191 191 Penfold, J., Chen, M., Thomas, R.K. et al. (2011). Solution self‐assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27: 8867–8877.

      192 192 Manet, S., Cuvier, A.‐S., Valotteau, C. et al. (2015). Structure of bolaamphiphile sophorolipid micelles characterized with SAXS, SANS, and MD simulations. J. Phys. Chem. B 119: 13113–13133.

      193 193 Cecutti, C., Focher, B., Perly, B., and Zemb, T. (1991). Glycolipid self‐assembly: Micellar structure. Langmuir 7: 2580–2585.

      194 194 Zhou, S., Xu, C., Wang, J. et al. (2004). Supramolecular assemblies of a naturally derived sophorolipid. Langmuir 20: 7926–7932.

      195 195 Baccile, N., Pedersen, J.S., Pehau‐Arnaudete, G., and Van Bogaertf, I.N.A. (2013). Surface charge of acidic sophorolipid micelles: Effect of base and time. Soft Matter 9: 4911–4922.

      196 196 Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization, and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488–494.

      197 197 Kakinuma, A., Hori, M., Sugino, H. et al. (1969). Determination of the location of the lactone ring in surfactin. Agric. Biol. Chem. 33: 1523–1524.

      198 198 Kakinuma, A., Ouchida, A., Shima, T. et al. (1969). Confirmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem. 33: 1669–1671.

      199 199 Kakinuma, A., Sugino, H., Isono, M. et al. (1969). Determination of fatty acids in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem. 33: 973–976.

      200 200 Kakinuma, A., Hori, M., Isono, M. et al. (1969d). Determination of amino acid sequence of surfactin, a crystalline peptide‐lipid surfactant produced by Bacillus subtilis. Agric. Biol. Chem. 33: 971–972.

      201 201 Bonmatin, J.M., Genest, M., Labbe, H., and Ptak, M. (1994). Solution three‐dimensional structure of surfactin: A cyclic lipopeptide studied by 1H‐NMR, distance geometry, and molecular dynamics. Biopolymers 34: 975–986.

      202 202 Vass, E., Besson, F., Majer, Z. et al. (2001). Ca2+‐induced changes of surfactin conformation: An FTIR and circular dichroism study. Biochem. Biophys. Res. Commun. 282: 361–367.

      203 203 Tsan, P., Volpon, L., Besson, F., and Lancelin, J.‐M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 129: 1968–1977.

      204 204 Zou, A., Liu, J., Garamus, V.M. et al. (2010). Micellization activity of the natural lipopeptide [Glu1, Asp5] surfactin‐C15 in aqueous solution. J. Phys. Chem. B 114: 2712–2718.

      205 205 Razafindralambo, H., Thonart, P., and Paquot, M. (2004). Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J. Surfactant Deterg. 7: 41–46.

      206 206 Thimon, L., Peypoux, F., and Michel, G. (1992). Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol. Lett. 14: 713–718.

      207 207 Thimon, L., Peypoux, F., Wallach, J., and Michel, G. (1993). Ionophorous and sequestering properties of surfactin, a biosurfactant from Bacillus subtilis. Colloids Surf. B. Biointerfaces 1: 57–62.

      208 208 Li, Y., Ye, R.‐Q., and Mu, B.‐Z. (2009). Influence of sodium ions on micelles of surfactin‐C16 in solution. J. Surfactant Deterg. 12: 31–36.

      209 209 Li, Y., Zou, A.‐H., Ye, R.‐Q., and Mu, B.‐Z. (2009). Counterion‐induced changes to the micellization of surfactin‐C16 aqueous solution. J. Phys. Chem. B 113: 15272–15277.

      210 210 Han, Y., Huang, X., Cao, M., and Wang, Y. (2008). Micellization of surfactin and its effect on the aggregate conformation of amyloid β(1‐40). J. Phys. Chem. B 112: 15195–15201.

      211 211 Ishigami, Y., Osman, M., Nakahara, H. et al. (1995). Significance of β‐sheet formation for micellization and surface adsorption of surfactin. Colloids Surf. B. Biointerfaces 4: 341–348.

      212 212 Maget‐Dana, R. and Ptak, M. (1992). Interfacial properties of surfactin. J. Colloid Interface Sci. 153: 285–291.

      213 213 Knoblich, A., Matsumoto, M., Ishiguro, R. et al. (1995). Electron cryo‐microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide. Colloids Surf. B. Biointerfaces 5: 43–48.

      214 214 Zou, A., Liu, J., Garamus, V.M. et al. (2010). Interaction between the natural lipopeptide [Glu1, Asp5] surfactin‐C15 and hemoglobin in aqueous solution. Biomacromolecules 11: 593–599.

      215 215 Osman, M., Hoiland, H., Holmsen, H., and Ishigami, Y. (1998). Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly. J. Pept. Sci. 4: 449–458.

      216 216 Shen, H.‐H., Thomas, R.K., Chen, C.‐Y. et al. (2009). Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir 25: 4211–4218.

      217 217 Menger, F.M. (2002). Supramolecular chemistry and self‐assembly. Proc. Natl. Acad. Sci. U. S. A. 99: 4819–4822.

      218 218 Bhattacharya, S., Maitra, U., Mukhopadhyay, S., and Srivastava, A. (2006). Advances in molecular hydrogels (eds. G. Weiss and P. Terech). Springer: Molecular Gels. Dordrecht.

      219 219 Galantini, L., di Gregorio, M.C., Gubitosi, M. et al. (2015). Bile salts and derivatives: rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Curr. Opin. Colloid Interface Sci. 20: 170–182.

      220 220 Savage, P.B. (2002). Cationic steroid antibiotics. Curr. Med. Chem.: Anti‐Infect. Agents 1: 293–304.

      221 221 Svobodova, H., Noponen, V., Kolehmainen, E., and Sievaenen, E. (2012). Recent advances in steroidal supramolecular gels. RSC Adv. 2: 4985–5007.

      222 222 Vázquez Tato, J. (2014). Molecular biomimicry. Santiago: Servicio de Publicaciones, USC. ISBN 978‐84‐16183‐11‐1.

Скачать книгу