Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 32

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

(1974). Enthalpy–entropy compensation for micellization and other hydrophobic interactions in aqueous solutions. Can. J. Chem. 52: 1834–1839.

      105 105 Pan, A., Kar, T., Rakshit, A.K., and Moulik, S.P. (2016). Enthalpy–entropy compensation (EEC) effect: decisive role of free energy. J. Phys. Chem. B 120: 10531–10539.

      106 106 Sugihara, G., Nakano, T.‐Y., Sulthana, S.B., and Rakshit, A.K. (2001). Enthalpy–entropy compensation rule and the compensation temperature observed in micelle formation of different surfactants in water. What is the so‐called compensation temperature? J. Oleo Sci. 50: 29–39.

      107 107 Debye, P. (1947). Molecular weight determination by light scattering. J. Phys. Chem. 51: 18–32.

      108 108 Debye, P. (1949). Light scattering in soap solutions. J. Phys. Colloid Chem. 53: 1–8.

      109 109 Tartar, H.V. and Lelong, A.L.M. (1955). Micellar molecular weights of some paraffin‐chain salts by light scattering. J. Phys. Chem. 59: 1185–1190.

      110 110 Turro, N.J. and Yekta, A. (1978). Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100: 5951–5952.

      111 111 Biltz, H. (1899). Practical Methods for Determining Molecular Weights. Easton: The Chemical Publishing Company.

      112 112 Krafft, F. (1896). A theory of colloidal solutions. Ber. Dtsch. Chem. Ges. 29: 1334–1344.

      113 113 Kahlenberg, L. and Schreiner, O. (1898). The aqueous solutions of the soaps. Z. Phys. Chem. 27: 552–566.

      114 114 Botazzi, F. and d'Errico, G. (1906). Physico‐chemical investigations of glycogen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 115: 359–386.

      115 115 McBain, J.W., Laing, M.E., and Titley, A.F. (1919). Colloidal electrolytes. Soap solutions as a type. J. Chem. Soc., Trans. 115: 1279–1300.

      116 116 McBain, J.W. and Betz, M.D. (1935). The predominant role of association in the dissociation of simple straight‐chain sulfonic acids in water. II. Freezing point. J. Am. Chem. Soc. 57: 1909–1912.

      117 117 Johnston, S.A. and McBain, J.W. (1942). Freezing‐points of solutions of typical colloidal electrolytes; soaps, sulphonates, sulphates and bile salt. Proc. R. Soc. London, Ser. A 181 (985): 119–133.

      118 118 Gonick, E. and McBain, J.W. (1947). Cryoscopic evidence for micellar association in aqueous solutions of nonionic detergents. J. Am. Chem. Soc. 69: 334–336.

      119 119 Herrington, T.M. and Sahi, S.S. (1986). Temperature dependence of the micellar aggregation number of aqueous solutions of sucrose monolaurate and sucrose monooleate. Colloids Surf. 17: 103–113.

      120 120 Burchfield, T.E. and Woolley, E.M. (1984). Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients. J. Phys. Chem. 88: 2149–2155.

      121 121 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1993). Aggregation behavior of sodium cholate in aqueous solution. J. Phys. Chem. 97: 10186–10191.

      122 122 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1996). Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci. 85: 9–15.

      123 123 Nagarajan, R. (1994). On interpreting fluorescence measurements: what does thermodynamics have to say about change in Micellar aggregation number versus change in size distribution induced by increasing concentration of the surfactant in solution? Langmuir 10: 2028–2034.

      124 124 Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W. (1976). Theory of self‐assembly of hydrocarbon amphiphile into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 (72): 1525–1568.

      125 125 Israelachvili, J. (2011). Intermolecular and Surface Forces, 3e. Santa Barbara, CA: Academic Press.

      126 126 Rusanov, A.I. (2014). The mass‐action‐law theory of micellization revisited. Langmuir 30: 14443–14451.

      127 127 Hoffmann, H. (2012). Structure formation in surfactant solutions. A personal view of 35 years of research in surfactant science. Adv. Colloid Interface Sci. 178: 21–33.

      128 128 Hall, D.G. and Wyn‐Jones, E. (1986). Chemical relaxation spectrometry in aqueous surfactant solutions. J. Mol. Liq. 32: 63–82.

      129 129 Finholt, J.E. (1968). The temperature‐jump method for the study of fast reactions. J. Chem. Educ. 45: 394.

      130 130 Kresheck, G.C., Hamori, E., Davenport, G., and Scheraga, H.A. (1966). Determination of the dissociation rate of dodecylpyridinium iodide micelles by a temperature‐jump technique. J. Am. Chem. Soc. 88: 246–253.

      131 131 Folger, R., Hoffmann, H., and Ulbricht, W. (1974). Mechanism of the formation of micelles in sodium dodecyl sulfate (SDS) solutions. Ber. Bunsenges. 78: 986–997.

      132 132 Inoue, T., Tashlro, R., Shlbuya, Y., and Shimozawa, R. (1978). Chemical relaxation studies in micellar solutions of dodecylpyridinium halides. J. Phys. Chem. 82: 2037.

      133 133 Lang, J., Tondre, C., Zana, R. et al. (1975). Chemical relaxation studies of micellar equilibria. J. Phys. Chem. 79: 276–283.

      134 134 Platz, G. (1979). The kinetics of micelle formation. NATO Adv. Study Inst. Ser., Ser. C C50: 239–248.

      135 135 Aniansson, E.A.G. and Wall, S.N. (1974). Kinetics of step‐wise micelle association. J. Phys. Chem. 78: 1024–1030.

      136 136 Kaatze, U. (2011). Kinetics of micelle formation and concentration fluctuations in solutions of short‐chain surfactants. J. Phys. Chem. B 115: 10470–10477.

      137 137 Teubner, M. (1979). Theory of ultrasonic absorption in micellar solutions. J. Phys. Chem. 83: 2917–2920.

      138 138 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 1. Broadband ultrasonic absorption spectrometry. J. Phys. Chem. B 101: 7758–7765.

      139 139 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 2. Extension of the model of stepwise association. J. Phys. Chem. B 101: 7766–7772.

      140 140 Haller, J. and Kaatze, U. (2009). Ultrasonic spectrometry of aqueous solutions of alkyl maltosides: kinetics of micelle formation and head‐group isomerization. ChemPhysChem 10: 2703–2710.

      141 141 Reiss‐Husson, F. and Luzzati, V. (1964). The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small‐angle X‐ray scattering techniques. J. Phys. Chem. 68: 3504–3511.

      142 142 Hayashi, S. and Ikeda, S. (1980). Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. J. Phys. Chem. 84: 744–751.

      143 143 Coello, A., Meijide, F., Mougan, M.A. et al. (1995). Spherical and rod SDS micelles. J. Chem. Educ. 72: 73–75.

      144 144 Tanford, C. (1972). Micelle shape and size. J. Phys. Chem. 76: 3020–3024.

      145 145 Aniansson, E.A.G., Wall, S.N., Almgren, M. et al. (1976). Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80: 905–922.

      146 146 Jung, H.T., Coldren, B., Zasadzinski, J.A. et al. (2001). The origins of stability

Скачать книгу