Введение в теорию риска (динамических систем). В. Б. Живетин
Чтение книги онлайн.
Читать онлайн книгу Введение в теорию риска (динамических систем) - В. Б. Живетин страница 39
Классические динамические системы [36].
В процессе эволюции теоретико-математических знаний о динамических системах введены несколько классов динамических систем, включающих:
«Классические динамические системы», исследованные Немыцким и Степановым (публикация 1949 г.).
Классические динамические системы включают:
«Динамические полусистемы», исследованные Бушау (1963 г.), Халкиным (1964 г.), в которых обобщено классическое определение динамических систем путем введения (рассмотрения) различных входных воздействий или внешних факторов W.
«Динамические системы и автоматы» в единстве, принадлежащие одному классу объектов, когда определение системы или машины включает входные воздействия и выходные величины. Создатели этого направления теоретических знаний: Задэ, Дезоер (1963 г.); Арбиб (1965); Вейес, Калман (1965 г.); Уаймор (1967 г.); Уиндекнехт (1967 г.).
Отметим особенности структурных динамических систем, у которых функциональные свойства неизменны.
Теория структурных динамических систем, которым посвящена работа [36], создана для динамических систем, в общем случае обладающих функциональными свойствами, которые либо неизменны во времени и пространстве, либо изменяются под воздействием внешних факторов W, в общем случае случайных. При этом структурные свойства системы исследуются в работе [36], где сказано: «Заметим, что одного знания текущего значения входного воздействия u(t) может оказаться недостаточным для предсказания выходной величины y(t). Предыдущие входные воздействия, подававшиеся на систему, могли изменить структуру Σ (например, из-за накопления энергии в первом приведенном примере или из-за срабатывания некоторого внутреннего переключателя во втором) настолько, что это приведет к изменению выходной величины. Другими словами, в общем случае значение выходной величины системы Σ зависит как от текущего значения входного воздействия, так и от предыстории этого воздействия. Лучше всего было бы не делать специальных различий между текущим и предшествующим входным воздействием системы. Поэтому мы будем говорить, что текущее значение выходной величины системы Σ зависит от состояния системы Σ, и определим чисто интуитивно текущее состояние системы Σ как такую часть настоящего и прошлого системы Σ, которая необходима для определения настоящих и будущих значений выходной величины. Другими словами, мы рассматриваем состояние системы Σ как некоторую (внутреннюю) характеристику системы Σ, значение которой в настоящий момент времени определяет текущее значение выходной величины и оказывает влияние на ее будущее. И если рассуждать совсем упрощенно, то состояние можно рассматривать как своего рода хранилище информации, или запоминающее устройство, или накопитель прецедентов. При этом нам