Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Чтение книги онлайн.

Читать онлайн книгу Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney страница 15

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney

Скачать книгу

not approximate or estimated).

      The construction in I1, I2, I3 indicates an integration domain left-bracket 0 comma t right-bracket or right-bracket 0 comma t right-bracket. (There is nothing surprising in that.) But in I1, I2, I3 the integrand values are not real or complex numbers, but random variables—which may be a bit surprising.

      But it is not unprecedented. For instance, the Bochner integration process in mathematical analysis deals with integrands whose values are functions, not numbers.

      The construction and definition of the Bochner integral [105] is similar in some respects to the classical Itô integral. What is the end result of the construction in I1, I2, I3?

      In general, the integral of a function f gives a kind of average or aggregation of all the possible values of f. So if each value of the integrand f left-parenthesis s right-parenthesis is a random variable, the integral of f should itself be a random variable—that is, a function which is measurable with respect to an underlying probability measure space.

      The proof of the Itô isometry relation (see I1) indicates that, as a stochastic process, script upper Z left-parenthesis s right-parenthesis must be independent of script upper X left-parenthesis s right-parenthesis. Otherwise the construction I1, I2, I3 would seem to be inadequate as it stands, whenever the process script upper Z left-parenthesis s right-parenthesis is replaced by a process f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis.

      In I3 the integrand script upper Z left-parenthesis s right-parenthesis does not have step function form; and, on the face of it, integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis indicates dependence of script upper Y (or script upper S Subscript t) on random variables script upper Z left-parenthesis s right-parenthesis and script upper X left-parenthesis s right-parenthesis for every s, 0 less-than-or-equal-to s less-than-or-equal-to t. If the integrand were f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis (which, in general, it is not), with joint random variability for 0 less-than-or-equal-to s less-than-or-equal-to t, and if left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis is Brownian motion, then the joint probability space for the processes left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis and left-parenthesis f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis right-parenthesis is given by the Wiener probability measure and its associated multi‐dimensional measure space. (The latter are described in Chapter 5 below.)

      Returning to I1, the Itô integral integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis of step function script upper Z left-parenthesis s right-parenthesis is defined as

sigma-summation Underscript j equals 1 Overscript n Endscripts script upper Z Subscript j minus 1 Baseline left-parenthesis script upper X left-parenthesis t Subscript j Baseline right-parenthesis minus script upper X left-parenthesis t Subscript j minus 1 Baseline right-parenthesis right-parenthesis

      where the script upper Z Subscript j are random variable values of script upper Z equals left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis. It is perfectly valid to combine finite numbers of random variables in this way, in order to produce, as outcome, a single random variable (—which may be a joint random variable depending on many underlying random variables).

      This part of the formulation of the integral of a step function in I1 corresponds to the integral of a step function in basic integration, and does not require any passage to a limit of random variables.

Скачать книгу