Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Чтение книги онлайн.

Читать онлайн книгу Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney страница 18

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney

Скачать книгу

      Continuing the discussion of I1, I2, I3, I4, it appears that the output of this definition of stochastic integral is a random entity script upper Y; perhaps a process which is some collection of random variables left-parenthesis script upper Y left-parenthesis s right-parenthesis right-parenthesis.

      Again comparing this with basic integration of a real number‐valued function f left-parenthesis s right-parenthesis, the integral integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s is some kind of average or weighted aggregate value for StartSet f left-parenthesis s right-parenthesis colon 0 less-than-or-equal-to s less-than-or-equal-to t EndSet. This integral, if it exists, produces a single unique real number (depending on the value of t), denoted by integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s.

      For random variable‐valued integrand f left-parenthesis s right-parenthesis equals script upper Z left-parenthesis s right-parenthesis, suppose (for the purpose of speculation) that the stochastic integral

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis script upper Y left-parenthesis omega right-parenthesis equals script upper Y Superscript prime Baseline prime left-parenthesis omega right-parenthesis for each omega element-of normal upper Omega period

      Does the definition of stochastic integral in I1, I2, I3 yield such a unique value for integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis? I2 and I3 do not guarantee uniqueness: there may be different sequences left-brace script upper Z Superscript left-parenthesis p right-parenthesis Baseline right-brace in I2 which converge “in mean square” to script upper Z. In effect, I4 asserts weak convergence of the integrals script upper S Subscript t Superscript left-parenthesis p right-parenthesis of the step functions script upper Z Superscript left-parenthesis p right-parenthesis to a value script upper S Subscript t for the integral of script upper Z, that value being not necessarily unique.

      If the integral does not have a unique value, what connections may exist between alternative values? Suppose there is more than one candidate random variable, say script upper Y and script upper Y prime, for the value of the stochastic integral,

script upper Y equals integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis comma script upper Y Superscript prime Baseline prime equals integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis

      In that case, what is the relation between script upper Y and script upper Y prime? For instance, is it the case that, for each real number a, the probabilities of corresponding measurable sets are equal (such as upper P left-parenthesis script upper Y not-equals a right-parenthesis equals upper P left-parenthesis script upper Y prime not-equals a right-parenthesis):

upper P left-parenthesis script upper Y less-than a right-parenthesis equals upper P left-parenthesis script upper Y Superscript prime Baseline prime less-than a right-parenthesis comma upper P left-parenthesis script upper Y greater-than a right-parenthesis equals upper P left-parenthesis script upper Y Superscript prime Baseline prime greater-than a right-parenthesis question-mark

      The framework outlined above does not include the important case integral Subscript 0 Superscript t Baseline d script upper X left-parenthesis s right-parenthesis squared equals t, where left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis (0 less-than s less-than-or-equal-to t) is Brownian motion. Broadly speaking, integral Subscript 0 Superscript t Baseline d script upper X left-parenthesis s right-parenthesis squared equals t means that the random variables represented by finite sums

sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper X left-parenthesis t Subscript j Baseline right-parenthesis minus script upper X left-parenthesis t Subscript j minus 1 Baseline right-parenthesis right-parenthesis squared

      converge as t Subscript j Baseline minus t Subscript j minus 1 tend to zero, each j. In fact the convergence is weak, not point‐wise, with

normal upper E left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper X left-parenthesis t Subscript j Baseline right-parenthesis minus script upper X left-parenthesis t Subscript j minus 1 Baseline right-parenthesis squared right-parenthesis right-arrow t comma

      and

Скачать книгу