Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Чтение книги онлайн.

Читать онлайн книгу Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney страница 17

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney

Скачать книгу

t Baseline midline-horizontal-ellipsis d s"/> part of this statement should be unproblematical. The domain left-bracket 0 comma t right-bracket is a real interval, and has a distance or length function, which, in the context of Lebesgue integration on the domain, gives rise to Lebesgue measure mu on the space script upper M of Lebesgue measurable subsets of left-bracket 0 comma t right-bracket. So integral Subscript 0 Superscript t Baseline midline-horizontal-ellipsis d s can also be expressed as integral Subscript 0 Superscript t Baseline midline-horizontal-ellipsis d mu.

      However, the random variable‐valued integrand script upper Z left-parenthesis s right-parenthesis squared is less familiar in Lebesgue integration. Suppose, instead, that the integrand is a real‐number‐valued function f left-parenthesis s right-parenthesis. Then the Lebesgue integral integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s, or integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d mu, is defined if the integrand function f is Lebesgue measurable. So if J is an interval of real numbers in the range of f, the set f Superscript negative 1 Baseline left-parenthesis upper J right-parenthesis is a member of the class script upper M of measurable sets; giving

f Superscript negative 1 Baseline left-parenthesis upper J right-parenthesis comma equals StartSet s colon f left-parenthesis s right-parenthesis element-of upper J EndSet comma element-of script upper M period

      How does this translate to a random variable‐valued integrand such as script upper Z left-parenthesis s right-parenthesis squared? Two kinds of measurability arise here, because, in addition to being a mu‐measurable function of s element-of left-bracket 0 comma t right-bracket, script upper Z left-parenthesis s right-parenthesis is a random variable (as is script upper Z left-parenthesis s right-parenthesis squared), and is therefore a P‐measurable function on the sample space normal upper Omega:

StartLayout 1st Row 1st Column left-bracket 0 comma t right-bracket times normal upper Omega 2nd Column right-arrow from bar Overscript script upper Z Endscripts 3rd Column bold upper R comma 2nd Row 1st Column left-parenthesis s comma omega right-parenthesis 2nd Column right-arrow 3rd Column script upper Z left-parenthesis s comma omega right-parenthesis element-of bold upper R period EndLayout

      Likewise script upper Z left-parenthesis s right-parenthesis squared. For integral Subscript 0 Superscript 1 Baseline script upper Z left-parenthesis s right-parenthesis squared d s to be meaningful as a Lebesgue‐type integral, the integrand script upper Z left-parenthesis s right-parenthesis squared must be script upper M‐measurable (or mu‐measurable) in some sense. At least, for purpose of measurability there needs to be some metric in the space of left-parenthesis normal upper Omega comma upper P right-parenthesis‐measurable functions f Subscript s, 0 less-than-or-equal-to s less-than-or-equal-to t, with f Subscript s Baseline left-parenthesis omega right-parenthesis element-of bold upper R, omega element-of normal upper Omega:

StartSet f Subscript s Baseline equals script upper Z left-parenthesis s right-parenthesis squared colon 0 less-than-or-equal-to s less-than-or-equal-to t EndSet period

      For example, the “distance” between f Subscript s 1 and f Subscript s 2 could be

integral Underscript normal upper Omega Endscripts StartAbsoluteValue f Subscript s 1 Baseline left-parenthesis omega right-parenthesis minus f Subscript s 2 Baseline left-parenthesis omega right-parenthesis EndAbsoluteValue d upper P period

      With such a metric at hand, it may then be possible to define integral Subscript 0 Superscript t Baseline f Subscript s Baseline d s, or integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis squared d s, as the limit of the integrals of (integrable) step functions f Subscript s Superscript left-parenthesis p right-parenthesis converging to f Subscript s for 0 less-than-or-equal-to s less-than-or-equal-to t, as p right-arrow infinity.

      Unfortunately, most standard textbooks do not give this point much attention. But for relatively straightforward integrands such as script upper Z left-parenthesis s right-parenthesis squared, it should not be too

Скачать книгу