Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Чтение книги онлайн.

Читать онлайн книгу Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney страница 16

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney

Скачать книгу

alt="t Subscript j minus 1 Baseline less-than-or-equal-to s less-than t Subscript j"/>, script upper Z left-parenthesis s right-parenthesis equals script upper Z Subscript j minus 1 Baseline equals alpha Subscript j minus 1. (Accordingly, in I1, script upper Z Subscript j can be regarded as a “degenerate” random variable, with atomic probability value.) Suppose the integrator is the real‐valued ds instead of the random variable‐valued d script upper X left-parenthesis s right-parenthesis. Then4

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d s equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper Z Subscript j minus 1 Baseline times left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts alpha Subscript j minus 1 Baseline left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis period

      Formally, at least, this looks like the definition in I1 of integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis when script upper Z left-parenthesis s right-parenthesis is a step function. The factor t Subscript j Baseline minus t Subscript j minus 1 equals integral Subscript t Subscript j minus 1 Baseline Superscript t Subscript j Baseline d s for each j. This emerges naturally from the mathematical meaning of the length or distance variable s, and from the mathematical meaning of integral Subscript 0 Superscript t Baseline.

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper Z Subscript j minus 1 Baseline integral Subscript t Subscript j minus 1 Baseline Superscript t Subscript j Baseline Baseline d script upper X left-parenthesis s right-parenthesis right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis alpha Subscript j minus 1 Baseline integral Subscript t Subscript j minus 1 Baseline Superscript t Subscript j Baseline Baseline d script upper X left-parenthesis s right-parenthesis right-parenthesis question-mark

      With each alpha Subscript j Baseline equals 1, this would imply

      (1.1)integral Subscript 0 Superscript t Baseline d script upper X left-parenthesis s right-parenthesis equals script upper X left-parenthesis t right-parenthesis minus script upper X left-parenthesis 0 right-parenthesis equals script upper X left-parenthesis t right-parenthesis period

      If this is unproblematical, it should be possible to deduce it from one or other of the various mathematical definitions of Brownian motion left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis, along with some mathematical definition of the integral integral Subscript 0 Superscript t Baseline in this context.

      But it appears that there is no such understanding of integral Subscript 0 Superscript t Baseline d script upper X left-parenthesis s right-parenthesis equals script upper X left-parenthesis t right-parenthesis. So, as in I1, it seems that this formulation is to be regarded as a basic postulate or axiom of stochastic integration.

      Returning to the definition of the classical Itô integral, I2 has the following condition on the expected value of the integral of the process left-parenthesis script upper Z left-parenthesis s right-parenthesis squared:

normal upper E left-parenthesis integral Subscript 0 Superscript t Baseline left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis squared d s right-parenthesis less-than infinity period

      The idea here is that, if script upper Y is the random entity obtained by carrying out some form of weighted aggregation—denoted by integral Subscript 0 Superscript t Baseline left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis squared d s—of all the individual random variables script upper Z left-parenthesis s right-parenthesis (0 less-than-or-equal-to s less-than-or-equal-to t), then

normal upper E left-parenthesis script upper Y right-parenthesis equals integral Underscript normal upper Omega Endscripts script upper Y left-parenthesis omega right-parenthesis d upper P less-than infinity period

      This formulation assumes that the aggregative operation integral Subscript 0 Superscript t Baseline left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis squared d s, involving infinitely many random variables script upper Z left-parenthesis s right-parenthesis (0 less-than-or-equal-to s less-than-or-equal-to t), produces a single random entity script upper Y whose expected value can be obtained by means of the operation integral Underscript normal upper Omega Endscripts midline-horizontal-ellipsis d upper P.

      Additionally, integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis squared d s is said to be a Lebesgue integral‐type construction. The integral 
						<noindex><p style= Скачать книгу