Geologie der Alpen. O. Adrian Pfiffner
Чтение книги онлайн.
Читать онлайн книгу Geologie der Alpen - O. Adrian Pfiffner страница 10
2-2 Geologische Karte des südlichen Schwarzwaldes, basierend auf Eisbacher et al. (1989) und Huber & Huber (1984). Die Verbandsverhältnisse veranschaulichen die spätpaläozoische Entwicklungsgeschichte. An: Andalusit, Bi: Biotit, Chlor: Chlorit, Cor: Cordierit, Gra: Granat, Mu: Muskovit, Sill: Sillimanit.
2.2 Das prä-triadische Grundgebirge der Externmassive
In den Externmassiven der Alpen ist das prä-triadische Grundgebirge in mehreren Kristallinaufbrüchen der direkten Beobachtung zugänglich. Infolge der zusätzlichen alpinen Überprägung, die im Schwarzwald fehlt, ist eine Deutung der Gesteinsverbände in den isolierten Aufschlüssen für einzelne Fälle noch schwieriger. Trotzdem lassen sich einige Gemeinsamkeiten feststellen. An mehreren Orten kommen beispielsweise proterozoische Metasedimente, ordovizische |Seite 42| Orthogneise, variszische Migmatite und spät- oder post-variszische Granite des frühen Karbons, sowie permische Granite, Vulkanite und kontinentale Klastika vor, um die wichtigsten Elemente vorwegzunehmen. Andere Serien, wie etwa unmetamorphe paläozoische Sedimente des Ordoviziums, Silurs und Devons, sind bezüglich ihres Vorkommens auf einzelne Regionen, das Ostalpin im Speziellen, beschränkt. Um den regionalen Unterschieden gerecht zu werden, erfolgt die Diskussion des prä-triadischen Grundgebirges regional gegliedert und beschränkt sich auf einige besonders gut dokumentierte Beispiele.
Wie aus Abb. 2-1 ersichtlich, reihen sich die Kristallinaufbrüche von Argentera, Pelvoux, Belledonne und Aiguilles Rouges/Mont Blanc im externen Teil der Alpen aneinander. All diesen Externmassiven gemeinsam ist nach von Raumer et al. (1993c) eine Serie von polymetamorphen Metasedimenten, die im Silur oder frühen Devon von einer Hochdruck-Metamorphose mit Eklogitbildung und später, im späten Devon oder frühen Karbon, von einer regionalen Metamorphose, die in Zusammenhang mit der variszischen Gebirgsbildung steht, überprägt wurde. Schließlich erfolgten jüngste Überprägungen anlässlich der alpinen Orogenese. Die Metasedimente werden auch unter dem Begriff „Altkristallin“ zusammengefasst. Sie dürften altersmäßig ins späte Proterozoikum und frühe Paläozoikum zu stellen sein (von Raumer et al. 1993c). Eine Serie von Metagrauwacken, wechsellagernd mit Quarziten und Metapeliten, seltenen Karbonaten, ist möglicherweise als Plattformsedimente assoziiert mit einem Rift zu deuten. Eine andere Serie, bestehend aus Glimmerschiefern mit Amphibolitlagen und Diopsid-Marmoren, begleitet von gebänderten Metagrauwacken und sauren Gneisen und Amphiboliten, ist eher in einem ozeanischen Umfeld zu sehen.
Für die im Argentera-Massiv verbreitet vorkommenden granitischen Bändergneise werden als Protolith saure Vulkanite vermutet, während die Augengneise und feinkörnigen granitischen Gneise im Aiguilles Rouges-Massiv als Metavulkanite eines ehemaligen Inselbogens gedeutet werden. Schließlich sind die Augengneise im Mont Blanc-Massiv, deren Alter mit 460 Millionen Jahre angegeben werden kann, als ordovizische Granite zu interpretieren. Unklar ist das Alter der Metapelite (sogenannte Série satinée) im Belledonne-Massiv.
Neben diesen polymetamorphen Metasedimenten sind hauptsächlich im Belledonne-Massiv monometamorphe Serien auszumachen (von Raumer et al. 1993c). Eine dieser Serien, der Chamrousse-Ophiolith, besteht aus ultramafischen Gesteinen und Gabbros mit einem Kristallisationsalter von 497 bis 496 Millionen Jahren. Die Entstehung wird am Übergang von ausgedünnter, ozeanisierter kontinentaler Kruste zu ozeanischer Kruste angenommen. Deutlich jünger ist der plutonisch-vulkanische Komplex von Rioupéroux-Livet mit Amphiboliten und Trondhjemiten (Alter 365 bis 350 Millionen Jahre). Die Taillefer-Serie schließlich enthält Metapelite, -arenite, -konglomerate sowie Metaspilite und -keratophyre, die altersmäßig ins ältere Karbon zu stellen sind. Bei dieser letzten Serie könnte es sich um Sedimente und Vulkanite handeln, die in Zusammenhang mit der Bildung eines intrakontinentalen Pullapart-Beckens zu sehen sind.
|Seite 43|
Verbreitet sind auch variszische Migmatite, die teilweise Cordierit enthalten. Exhumation durch Deckenstapelung und Erosion im späten Devon und frühen Karbon führten zu einer Dekompression und einer Erhöhung des geothermischen Gradienten im entstehenden variszischen Gebirge. Als Folge davon kam es zur Aufschmelzung (Anatexis) von Krustengesteinen.
Die Deformation während der variszischen Gebirgsbildung begann im späten Devon. Eine Hauptschieferung überprägte frühe, prä-existente Falten, und auf dieser Hauptschieferung ist eine Streckungslineation zu sehen, die auf eine Nord-Süd-Scherung deutet (von Raumer et al. 1993c). Später, im frühen Karbon, entstanden Großfalten, die alle früheren Strukturen überprägten.
Schließlich enthalten die Externmassive eine Reihe von spät- und post-variszischen Graniten. Die granitoiden Schmelzen intrudierten das polymetamorphe Altkristallin, die monometamorphen Serien und die Migmatite. Nach Bonin et al. (1993) sind die älteren Intrusionen im frühen Karbon (vor 350 bis 330 Millionen Jahren) eingedrungen, K-reich, der kalk-alkalischen Reihe zuzuordnen, und ihr porphyritisches Gefüge deutet auf ein seichtes Intrusionsniveau. Diese Granitoide sind nach der Kollision von Gondwana mit Baltica in einen fertigen Krustenstapel eingedrungen, sind also spät-variszisch.
Im späten Karbon (vor 320 bis 290 Millionen Jahren) sind vulkanischplutonische Komplexe der Alkali- bis Kalkalkali-Reihe entstanden. Ihre Platznahme ist im Umfeld einer post-variszischen Dehnungstektonik zu sehen.
Schließlich sind im Perm noch jüngere vulkanische und plutonische Aktivitäten zu verzeichnen. Diese sind im Zusammenhang mit einer westmediterranen Provinz und dem Aufbrechen von Pangäa bzw. der Öffnung eines Arms der Tethys Richtung Westen zu sehen (vgl. S. 22, Abb. 1-5).
Im Argentera-Massiv (Abb. 2-3) sieht man, wie ein post-variszischer Granit, dessen Alter nach Bonin et al. (1993) in die Wende spätestes Karbon/frühestes Perm (293 bis 285 Millionen Jahre) fällt, einen Orthogneiskörper und die Grenze der variszischen Migmatite zum Altkristallin schneidet.
Am Beispiel des südwestlichen Belledonne-Massivs (Abb. 2-4) sind variszische Hauptüberschiebungen auszumachen, die den Chamrousse-Ophiolith und das Altkristallin in entgegengesetztem Sinn auf den Rioupéroux-Livet-Intrusivkomplex aufschieben. Der variszische Granit (Sept-Laux-Granit), der sich als relativ schmales Band über 100 Kilometer nach Nordosten fortsetzt, ist mit seinem Alter von 330 Millionen Jahren, d. h. frühes Karbon, als spät-variszisch einzustufen. Nach Bonin et al. (1993) sind die Schmelzen durch fortlaufende Anatexis in der Unterkruste entstanden.
Im Aiguilles Rouges-Massiv (Abb. 2-5) fällt auf, dass die im Altkristallin eingefalteten Sedimente des Devons und Karbons im Südwesten Nord-Süd verlaufen, also schief zum alpinen Streichen, das durch die längliche Form der beiden Massive angedeutet ist. Demgegenüber verlaufen die jungpaläozoischen Sedimente im Nordwesten des Massivs parallel zum alpinen Streichen und parallel zum schmalen Band des Vallorcine-Granits. Dieser Granit ist nach Bonin et al. (1993) als tafelartiger Pluton vor 320 Millionen Jahren eingedrungen, und zwar in einem transtensiven Regime. Die Schmelzen deuten auf Anatexis im krustalen Bereich (Aufschmelzung von Metapeliten), aber gewisse mafische Komponenten schließen einen Beitrag von Mantelschmelzen nicht aus.
|Seite 44|