Estructuras de álgebra multilineal. Joaquín Olivert Pellicer
Чтение книги онлайн.
Читать онлайн книгу Estructuras de álgebra multilineal - Joaquín Olivert Pellicer страница 5
En la Segunda Parte, se expone las propiedades más importantes de la estructura de los módulos, paso previo para desarrollar cómodamente los espacios vectoriales en la unidad didáctica siguiente. Se introduce los conceptos de producto, coproducto y suma directa de módulos, los cuales son necesarios, pongamos por caso, para estudiar las sucesiones exactas escindibles. Ejemplos de este tipo de sucesiones exactas son las formadas por módulos proyectivos y libres. Estos últimos están tratados con cierta extensión, pues por primera vez aparece el importantísimo concepto de base, cuya utilidad es de sobra conocida cuando se trabaja en componentes de «objetos» definidos en espacios vectoriales. Los productos tensorial y exterior están desarrollados con sumo cuidado y detalle. Estos conceptos volverán a ser estudiados en los citados espacios vectoriales y en las álgebras asociativas, lo que darán lugar a las definiciones de tensor y de formas exteriores.
Los llamados tensores y formas exteriores, conocimientos indispensables para el científico moderno, constituyen la materia central de la Tercera Parte de la obra. Las formas exteriores, definidas en espacios vectoriales, forman un álgebra exterior, cuyo producto es el de Grassmann. Es tal la importancia que va adquiriendo este cálculo, que, en corroboración de ello, se dedica un capítulo a los espacios simplécticos, pues estas estructuras se imponen cada vez más en los desarrollos de la Física Matemática.
En la siguiente unidad didáctica se estudia extensamente los distintos tipos de productos escalares o métricas, indispensables tanto para físicos como para matemáticos que deseen especializarse en Análisis Matemático o en Geometría Diferencial, pues en ella encontrarán (probadas) las propiedades de las formas hermíticas, formas cuadráticas (con una breve incursión a la clasificación de las cónicas no degeneradas), antiderivaciones en álgebras asociativas, espacios orientados y, en ellos, el operador de Hodge, etc.
Finalmente, los seis últimos capítulos constituyen la Quinta Parte de la obra. Tratan sobre álgebras de Clifford y grupos de spin. Se ha desarrollado con detenimiento, haciendo ver al lector la necesidad de conocer previamente gran parte los temas expuestos en las unidades didácticas anteriores. Con ello se pretende que el estudiante adquiera una sólida base para que pueda abordar los fibrados espinoriales y posea, en consecuencia, un dominio del cálculo espinorial, empleado frecuentemente en Física Teórica. Damos una lista completa de las álgebras de Clifford, en la que los complejos, los cuaterniones, el álgebra de Pauli y la de Dirac forman parte.
Para terminar diremos que en el Diccionario de materias y autores sólo citamos la página en donde aparece el concepto definido. En casos excepcionales se hace referencia a alguna página más cuando de alguna manera en éstas se complementa los conceptos ya tratados. En cambio se ha adoptado el criterio de citar todas las veces que los autores se mencionan en la obra.
Por otra parte, las definiciones, lemas, teoremas, proposiciones y corolarios de un capítulo, citados en el mismo, vendrán impresos en negrita, mientras que si son de otro capítulo se citarán en letra normal. En la terna de números que marcan las ecuaciones y expresiones matemáticas, los dos primeros refieren a la numeración del capítulo donde aparece. Si tales expresiones se hallan marcadas por un par de números, se quiere indicar que no pertenece a ninguna demostración de teorema alguno. El primer elemento del par hace referencia a la sección donde está ubicada en el capítulo, y el segundo corresponde a la ordenación numérica dentro de la sección mencionada. La numeración de definiciones, proposiciones, teoremas, etc. sigue el mismo criterio.
Me considero en deuda con mis compañeras de profesorado, Profs. Amparo Cortés y Pilar Martín, que, de manera desinteresada, revisaron capítulos fundamentales del libro y me aportaron inestimables sugerencias que han contribuido a dar mayor precisión en los conceptos y claridad en las demostraciones.
Dedico especial mención a los Profs, y compañeros Vicente Liern y Carlos Ivorra, por la paciente y ardua labor de revisión de las pruebas de imprenta. Labor valiosísima y que difícilmente podré resarcirme por la deuda contraída, debido al tiempo que han invertido en ella y por las múltiples sugerencias que he recibido. Si hubiere algún error en el texto, es totalmente de mi responsabilidad por no seguir fiel y taxativamente sus instrucciones.
Me siento también muy gratificado por la gentileza que ha tenido el Prof. Bernabéu por haber prologado mi libro, por lo cual expreso mi más alta distinción y consideración.
A Ana Marina Osca, secretaria de mi departamento durante muchos años, deseo manifestar mi excelsa gratitud por la paciencia y dedicación que ha tenido conmigo. Sin su ayuda difícilmente se hubiera presentado la obra en las condiciones con que aparece.
También he de agradecer a los compañeros del departamento la comprensión que he recibido en todo momento, pues en los años de elaboración de esta obra me han fortalecido con sus palabras alentadoras y valiosas sugerencias.
Por último, no puedo silenciar el reconocimiento que tengo hacia mis alumnos. Gracias a ellos, me he ido forjando paulatinamente en rigor, en matices conceptuales, y como docente en mi dilatada vida al servicio de la Universidad.
J. OLIVERT
València, mayo de 1996
Parte I
Teoría de conjuntos y cardinalidad
1. Axiomática
Inmediatamente después de que Georg Cantor publicara su Teoría de Conjuntos, surgieron serias objecciones que pusieron en tela de juicio la consistencia lógica de la misma. Entre ellas, es célebre la paradoja de Russell, propuesta por el eminente filósofo y matemático en 1902. Bertrand Russell define el “conjunto” formado por los conjuntos que no son elemento de sí mismo. Aunque a simple vista pueda parecer retorcido este tipo de objetos, si nos paramos a pensar un momento nos daremos cuenta de que no lo son, y no sólo eso, sino que se puede llegar a creer que todos los conjuntos gozan de esta propiedad. Así, por ejemplo, consideremos el conjunto B constituido por los libros de una biblioteca. Está claro que B no es un libro, y esto conduce a que B (como elemento) no pertenezca a B (como conjunto). No obstante, mientras que no se establezca algún axioma que excluya los conjuntos que sean elementos de sí mismos, consideraremos esta posibilidad.
Volvamos a la discusión del “conjunto” de Russell, que representaremos por R, y nos planteamos si R pertenece o no a R. Si R es miembro del “conjunto” de Russell R, resulta (por la misma definición del “conjunto” de Russell) que R no es elemento de sí mismo, lo que es una contradicción. Si, por el contrario, consideramos desde principio que R es un conjunto del tipo como el de la biblioteca B, es decir, que no sea elemento de sí mismo, pertenecerá por definición al “conjunto” de Russell R, y es de nuevo contradictorio. Al final de este razonamiento, somos incapaces de asegurar si R pertenece o no a R.
Era tal la enconada virulencia que se desencadenó en contra de la labor científica de Cantor, que se llegó al hecho inaudito de que fuera calificado de “corruptor de la juventud' por parte del influyente matemático berlinés L. Kronecker. Pronto Cantor, acosado por la incomprensión y la tenaz negativa del mundo científico de la época por reconocerle valor alguno a su obra, dio muestras de quebrantos mentales que empezaron a la edad de 39 años, y que se manifestaron intermitentemente hasta su muerte (acaecida en 1918 a los 73 años de vida).
Faltaríamos a la verdad históricà si no mencionáramos que Cantor tuvo partidarios, como Hilbert que defendió esta innovación matemática, aduciendo que, con la. Teoría de Conjuntos,