Manual de Física Estadística. Salvador Mafé Matoses

Чтение книги онлайн.

Читать онлайн книгу Manual de Física Estadística - Salvador Mafé Matoses страница 5

Manual de Física Estadística - Salvador Mafé Matoses Educació. Sèrie Materials

Скачать книгу

resposta a la pregunta anterior segueix un procediment d'inferència estadística: es considera un conjunt mental format per un gran nombre N de sistemes idèntics en el mateix estat macroscopic però en estats microscòpics diferents. Després, es considera una distribució de probabilitat per als estats microscòpics anteriors a partir de les característiques físiques del sistema estudiat. Conegudes les probabilitats respectives dels estats microscòpics, és possible efectuar mitjanes estadístiques sobre ells per passar de magnituds microscòpiques a magnituds macroscopiques. Desenvoluparem profusament aquestes idees al llarg dels pròxims temes.

      Els sistemes als quals aplicarem els raonaments anteriors es caracteritzaran per tindré els paràmetres macroscòpics que els defineixen independents del temps i de la posició espacial dins de la mostra que constitueix el sistema. (Aquesta darrera condició, que exclou la possibilitat de fluxos estacionaris de matèria, energia, etc., serà omesa en el capítol 8 en el qual efectuarem una introducció als fenòmens de transport.) La independència espacial i temporal dels paràmetres macroscòpics és característica d'un sistema en equilibri termodinàmic. A més, ens ocuparem preferentment dels sistemes de partícules no interactives, si bé tractarem en el capítol 7 alguns problemes en els quals la interacció entre les partícules constituents del sistema no es pot ignorar.

      El punt de partida per al desenvolupament de la Física Estadística és el concepte d'estat quàntic estacionari d'una partícula o sistema de partícules [Kittel i Kroemer, cap. 1; Benedek i Villars, cap. 4]. Per a un sistema en un estat estacionari, totes les magnituds observables com ara l'energia o el nombre de partícules no canvien amb el temps.

      Cada estat quàntic té una energia definida. Estats amb energia idèntica pertanyen al mateix nivell d'energia, i la multiplicitat o degeneració d'un nivell d'energia és el nombre d'estats quàntics distints amb la mateixa energia. El nombre d'estats quàntics és la magnitud important en Física Estadística, no el nombre de nivells d'energia. Sovint, tractarem sumes sobre tots els estats quàntics d'un sistema i, per efectuar aquestes sumes, dos estats distints amb la mateixa energia han de comptar-se sempre com a dos estats, no com un nivell.

      L'energia d'un sistema és l'energia total (cinètica + potencial) de totes les partícules tenint en compte la interacció entre partícules si n'hi haguera. Un estat quàntic del sistema de partícules és un estat de totes les partícules. Si les partícules són no interactives, podem reduir un problema de N partícules a un problema d'l partícula, i l'estat del sistema de N partícules es pot obtindré directament dels estats individuals de cada partícula. Els estats quàntics d'un sistema constituït per una sola partícula s'anomenen orbitals. Com a exemple, la fig. 1 representa els nivells d'energia més baixos per a una partícula lliure de massa m confinada en una capsa cúbica de costat L. Es mostra també el nombre d'estats quàntics (la degeneració o multiplicitat) corresponents al mateix nivell d'energia. L'energia de la partícula es pot escriure com

images

      Figura 1

images

      on nx, ny, nz són els tres nombres quàntics (tres enters positius) que caracteritzen cada estat de partícula (orbital). En general, per descriure les propietats estadístiques d'un sistema de N partícules, necessitem conèixer el conjunt de valors de l'energia ES(N), on ES(N) és l'energia de l'estat s del sistema de N partícules. En els capítols següents considerarem amb preferència les propietats d'aquells sistemes per als quals ES(N) es pot calcular exactament.

      Altres exemples [Benedek i Villars, cap. 4] per a ES(N) apareixen en les figs. 2-4, on hem omès l'efecte de la degeneració. Així, la fig. 2 mostra els nivells d'energia del e- en un àtom de H, En(1). Els estats lligats, corresponents a energies negatives, estan quantitzats. Per a En(1) > 0, el e- no està lligat, i l'espectre d'energies és continu.

images

      Figura 2

images

      Figura 3

images

      Figura 4

      Si es considera no un àtom, sinó la molècula de H2, els nivells d'energia (i per tant els estats de la molècula) són més complicats. De nou, la molècula posseeix diversos estats corresponents als nivells d'energia de cada electró. Però per a cada estat de l'electró, la molècula completa pot també vibrar i rotar. Les figs. 3 i 4 mostren que les energies d'excitació corresponents a la rotació Ej(2) i a la vibració images están també quantitzades. La línia discontínua representa Y energia tèrmica kT ≈ 4 x 10-21 J ≈ 30 meV per a T = 300 K, amb k = 1.38 x 10-23 J/K la constant de Boltzmann. En les figs. 3 i 4, els nivells d'energia per sobre del nivell fonamental corresponen als diversos estats excitats. La separació entre els nivells de vibració de la fig. 4 és d'uns 0.5 eV « 10 eV característics de la separació entre el nivell fonamental i el primer nivell excitat dels nivells electrònics (vegeu la fig. 2). Els nivells rotacionals (vegeu la fig 3) presenten separacions fins i tot menors (≈ 7 meV). Per consegüent, a temperatura ambient les molècules de H2 presenten només estats electrònics fonamentals. Aquest és també el cas dels estats vibracionals aproximadament (vegeu la fig. 4), però no el dels rotacionals, ja que kT > EJ=0,1,2(2) en la fig. 3.

      En molècules poliatòmiques apareixen nous estats o modes de vibració (vegeu la fig. 5). La molècula de H20, p. ex., pot repartir la seua energia de vibració simultàniament entre els tres modes de vibració de la fig. 5 (anomenats modes normals). L'energia corresponent a cada mode està quantitzada, i és additiva si l'excitació s'esdevé simultàniament en més d'un mode. L'energia vibracional de la molècula es pot escriure ara com images, on na, nb, nc prenent els valors 0, 1, 2, … (vegeu la fig. 6 [Benedek i Villars, cap. 4]), i defineixen l'estat quàntic vibracional del sistema de 3 àtoms que componen la molècula de la fig. 5.

images

      Figura 5

images

      Figura 6

      En tots els casos anteriors, el concepte d'estat quàntic, caracteritzat en cada cas pels seus nombres quàntics corresponents, permet una enumeració dels estats microscòpics per a un sistema de N partícules. Veurem en els capítols següents que aquesta enumeració és sempre el pas inicial de tot tractament en Física Estadística.

      Les matemàtiques requerides per a una introducció a la Física Estadística són elementals [Reif, caps. 1, 2, 6 i A. 1–11; de la Rubia i Brey, cap. 1; Kittel i Kroemer, cap. 1; Stark i Woods, caps. 1–4], si bé el desenvolupament de determinats temes a un nivell més avançat requereix tècniques més complicades [Chandler, caps. 5–8; Huang, caps. 8–10 i 14–18].

      Tal com hem avançat al final de la secció

Скачать книгу