Manual de Física Estadística. Salvador Mafé Matoses
Чтение книги онлайн.
Читать онлайн книгу Manual de Física Estadística - Salvador Mafé Matoses страница 8
amb
Figura 9a
Figura 9b
3.3 Distribució de Gauss
La distribució de probabilitats de Gauss o distribució gaussiana es pot obtindré com a límit de la distribució binòmia quan N pren valors grans. Abans de demostrar aquest resultat, exposarem de forma breu com es pot passar d'una distribució de probabilitats W de variable aleatòria ui discreta a una altra distribució w de variable u contínua [de la Rubia i Brey, cap. 1].
Una variable aleatòria contínua es defineix mitjançant la funció densitat (o distribució) de probabilitat w(u) el significat de la qual és tal que
w(u)du = probabilitat que la variable u prenga un valor dins de l'interval comprès entre u i u+du.
Suposem una variable aleatòria discreta ui amb distribució de probabilitat W(ui). Per a major senzillesa, admetrem que la diferència entre dos valors consecutius de la variable anterior pren un valor constant δu, de manera que ui+1 - ui = δu, ∀i. Admetrem a més que δu és suficientment petita com perquè puguem definir un du que, tot i permetent la utilització del càlcul diferencial, siga molt més gran que δu (vegeu la fig. 10).
Figura 10
Finalment, suposarem que la variació de W amb ui és suficientment lenta com perquè W(ui) siga aproximadament constant per a tots els ui situats dins un mateix interval d'amplitud du. Tenint en compte que en l'interval du hi ha du/δu valors permesos de la variable discreta, w(u)du = W(punts en l'interval du) x du/δu, que permet passar d'una distribució discreta a una altra contínua i viceversa. Totes les definicions referents a valors mitjans i normalitzacions vistes per a una variable discreta es poden traslladar al cas continu substituint sumatoris per integrals, i tenint en compte que es possible estendre el rang de qualsevol variable aleatòria contínua des de -∞ a +∞ simplement considerant nuls els valors de la funció densitat de probabilitat corresponents a valors no possibles de la variable aleatòria. L'eq. (9) queda aleshores així
Estem ja en condicions d'estudiar el límit de la distribució binòmia en l'eq. (6) quan N → ∞. Aquest límit està tractat de forma rigorosa en la bibliografia [de la Rubia i Brey, cap. 1; Reif, cap. 1], i ací ens limitarem tan sols a esbossar-ne els detalls més importants. Si N pren un valor gran, la distribució binòmia tendeix a presentar un màxim molt pronunciat al voltant de
amb
i
on hem fet ús de l'aproximació de Stirling de l'eq. (4) per avaluar els logaritmes. No analitzarem la convergència del desenvolupament efectuat en l'eq. (19) detalladament7 [de la Rubia i Brey, cap. 1]. Admetrem que podem negligir els termes d'ordre superior al segon i escriure
Ara bé, si
on hem estès la integral des de -∞ fins a +∞ perquè la contribució de 1'integrand és negligible quan
Taula 4
Quan la integral s'estén des de -∞ fins a +∞ el seu valor és igual al doble del valor tabulai si h es parell, i zero si h és imparell. En general, I(h) = [(h – l)/(2a2)] I(h – 2) [de la Rubia i Brey, cap. 1; Reif, A.2–4], En el nostre cas, s'obté de l'eq. (23) i la