Thermografie. Eric Rahne
Чтение книги онлайн.
Читать онлайн книгу Thermografie - Eric Rahne страница 35
Abb. 34: typische Emissionsgrade realer Strahler in Abhängigkeit von der Wellenlänge (kategorisiert)
Als Untermauerung der obigen Kategorisierung folgen nunmehr einige häufige Materialien und derer spektraler Emissionsgrade. Die folgende Darstellung zeigt die Wellenlängenabhängigkeit der Emissionsgrade von Nichtmetallen.
Abb. 35: spektrale Emissionsgrade einiger Nichtmetalle (mit freundlicher Unterstützung der InfraTec GmbH, www.InfraTec.de [A12], editiert durch Autor)
Abb. 36: spektrale Emissionsgrade einiger Metalle (mit freundlicher Unterstützung der InfraTec GmbH, www.InfraTec.de [A13], editiert durch Autor)
In der Praxis ist die Übernahme von Emissionsgraden aus der Fachliteratur im Falle von Metallen sehr schwierig, schon alleine deswegen, da durch die atmosphärische Einwirkung viele Metalloberflächen sofort oxidieren und damit als oberste Schicht die nichtmetallischen strahlungsphysikalischen Eigenschaften der Oxidschicht ebenfalls Einfluss üben. Es ist also fast ausgeschlossen, Emissionsgrade in der Literatur zu finden, die sich genau auf die gerade zu messende Metalloberfläche und die aktuellen Messbedingungen (Spektralbereich, Oberflächenrauigkeit, Oxidation) beziehen. Es ist daher sinnvoller und genauer, den Emissionsgrad experimentell selbst zu bestimmen.
Abb. 37: spektrale Emissionsgrade verschiedener Aluminiumoberflächen (unterschiedliche Legierungen, Bearbeitungszustände und Oberflächenbehandlungen) (erstellt in Anlehnung an die Darstellung der Reflexion von Aluminium in [T167])
Abhängigkeit des Emissionsgrades von der Oberflächenrauigkeit
Je rauer die Oberfläche des Messobjektes ist, desto größer ist dessen Emissionsgrad. Dieser Effekt ist bei Nichtmetallen (auf Grund derer ohnehin hoher Emissionsgrade) relativ unbedeutend, bei Metallen dagegen ist dieser ausschlaggebend für den tatsächlichen Emissionsgrad. Erklärt werden kann der Einfluss der Rauigkeit dadurch, dass bei glatten (spiegelnden) Oberflächen eine gerichtete Spiegelung der Strahlung auftritt. Raue Oberflächen weisen nur eine diffuse Reflexion auf, während die strahlungsabgebende (bzw. aufnehmende) Fläche um Größenordnungen größer ist als bei glatten Oberflächen. Noch dazu tritt bei rauen Oberflächen der bereits im Kapitel des schwarzen Strahlers beschriebene Vorgang der Mehrfachreflexion und Aufsummierung in den Mikroriefen und -grübchen auf, welcher den Emissionsgrad (und natürlich den Absorptionsgrad gleichermaßen ebenfalls) erhöht.
Abb. 38: Arten der Reflexion
Abb. 39: Erhöhung der Absorption (links) und der Emission (rechts) bei rauen Oberflächen
Abhängigkeit des Emissionsgrades von der Körpertemperatur
Auch die Temperatur hat Einfluss auf den Emissionsgrad einer Körperoberfläche, was auf die Änderung der Materialeigenschaften (z.B. Kristallstruktur) zurückzuführen ist. Selbstverständlich führt auch der Übergang in einen anderen Aggregatzustandes zur Änderung des Emissionsgrades. Im Allgemeinen ist gültig, dass der Emissionsgrad (innerhalb eines Aggregatzustandes) mit der Temperatur ansteigt.
Abb. 40: Abhängigkeit des Emissionsgrades von der Körpertemperatur bei Metallen (Beispiele)
Diese Änderungen haben meistens nur bei hohen Temperaturen signifikante Auswirkungen. Bei Raumtemperatur sind die temperaturabhängigen Änderungen des Emissionsgrades typischerweise vernachlässigbar (von den wenigen Materialien abgesehen, die gerade in diesem Temperaturbereich eine Änderung ihres Aggregatzustandes aufweisen).
Abhängigkeit des Emissionsgrades vom Beobachtungswinkel
Ein schwarzer Strahler (Lambertscher idealer Strahler) spielt der Beobachtungswinkel keine Rolle. Egal aus welcher Richtung er betrachtet wird, der Emissionsfaktor ist überall und aus allen Richtungen immer gleich. Bei realen Strahlern hat der Beobachtungswinkel jedoch auch einen signifikanten Einfluss auf den Emissionsfaktor. Von der Oberflächennormalen um +/- 30° abweichende Beobachtungswinkel spielen eine vernachlässigbare Rolle. Der Emissionsfaktor von nichtmetallischen (isolierenden) Materialien nimmt jedoch für „flachere” Beobachtungswinkel (kleiner 50°) zuerst allmählich, schließlich drastisch ab. Bei Metallen (elektrischen Leitern) steigt der Emissionsfaktor bei „flacheren” (unter 50° betragenden) Beobachtungswinkeln bis auf einen oberflächennahen Betrachtungswinkel von 10° stark an. Bei noch flacheren Beobachtungswinkeln fällt er dann jedoch plötzlich wieder extrem ab.
Abb. 41: Abhängigkeit des Emissionsgrades vom Betrachtungswinkel bei Nichtmetallen (Nichtleitern)
Abb. 42: Abhängigkeit des Emissionsgrades vom Betrachtungswinkel bei Metallen (elektrischen Leitern)
Bei elektrisch leitenden Materialien (z.B. Metallen) gilt:
Gl. 42
(Der Index n kennzeichnet den Emissionswert in Richtung der Oberflächennormalen.)
Für elektrisch isolierende Materialien gilt der folgende Zusammenhang:
Gl. 43
Mittels obiger Gleichungen kann der für die Flächennormale einer Oberfläche bestimmte Emissionsgrad auf den für einen gewählten Beobachtungswinkel geltenden Wert umgerechnet werden. Hierbei ist zu beachten, dass der Winkel β die Winkelabweichung zur Flächennormalen und nicht der einschließende Winkel zur Objektoberfläche ist.
Hinweis: Bei der berührungslosen Temperaturmessung ist wegen der genannten Zusammenhänge damit zu rechnen, dass bei gekrümmten (z.B. zylindrischen) Körpern aus Metallen zu deren „Rändern” hin scheinbar höhere Temperaturen auftreten, bei Körpern aus Nichtmetallen dagegen ist eine scheinbar sinkende Temperatur zu beobachten. Streng betrachtet erfordert dieser Zusammenhang also eine Korrektur des jeweiligen örtlichen Emissionsgrades entsprechend der Körpergeometrie.
Achtung: Weiterhin ist zu beachten, dass die Emissionsgrade aufführenden Tabellen und Veröffentlichungen meistens nur die für die Flächennormale geltenden Emissionsgrade