Управление рисками рыночных систем (математическое моделирование). В. Б. Живетин

Чтение книги онлайн.

Читать онлайн книгу Управление рисками рыночных систем (математическое моделирование) - В. Б. Живетин страница 39

Управление рисками рыночных систем (математическое моделирование) - В. Б. Живетин Риски и безопасность человеческой деятельности

Скачать книгу

→ ∞,

→∞, то

      Часто при практических расчетах удобно использовать не φα(x), а . В этом случае для индикатора, подлежащего ограничению снизу, получаем:

      где W(t, Δx, δx) – совместная плотность распределения случайных процессов Δx, δx в момент времени t; xn = xкдоп.

      Вид подынтегральной функции выражений (1.8), (1.9) либо (1.10), (1.11) и основные факторы, подлежащие учету при ее формировании, определяются объектами или подсистемами рыночной системы и их режимом работы, а также множеством других параметров и факторов. При этом погрешность δx, как правило, не оказывает влияния на величину отклонения от номинального режима Δx. Это обстоятельство есть допущение, которое каждый раз необходимо проверять.

      С учетом сказанного выше, при практических расчетах вероятностей Pi зависимостью между погрешностями измерения δx и величинами отклонения параметров Δx от номинального режима можно пренебречь. В результате (см. рис. 1.37):

      где Δ = хдопхн; Δ = хn хн – Δх.

      На рис. 1.37 представлена геометрическая интерпретация событий, соответствующих вероятностям P2 и P3, определяемым по формулам (1.7) и (1.9) (ограничение сверху).

      Рис. 1.37

      Из последних соотношений следует, что вероятности Р3 и Р2 зависят от плотностей распределения W1x) отклонений x от номинальных значений xн, пороговых xn и допустимых xдоп значений параметров, плотности распределения суммарной погрешности W2x). При этом Р3 представляет вероятность попадания точки (Δx, δx) в область , ограниченную прямыми Δx = а = xдопxн и δx = xnxн – Δx (рис. 1.38). Величина δx изменяется от –∞ до b = xn xн. Вероятность попадания точки (Δx, δx) в область представляет собой Р2.

      Рис. 1.38

      Случай двустороннего ограничения параметров представлен на рис. 1.39. При этом Р3 представляет вероятность попадания точки с координатами (Δx, δx) в области и одновременно, а для Р2 в ,  – одновременно (рис. 1.39).

      Рис. 1.39

      Значения Р3 и Р2 должны удовлетворять допустимым значениям Рдоп. Если, например, Р3 > Р3доп, то необходимо принимать решение об уменьшении границ пороговых значений xн.

      Выводы.

      Для практической реализации полученных показателей риска необходимо:

      1. Выделить индикаторы, характеризующие потенциальную возможность возникновения критического (опасного) состояния рыночной системы, т. е. провести качественный анализ риска.

      2. Для выделенных индикаторов х найти их критические значения.

      3. Для численного расчета вероятностных показателей риска необходимо построить математическую модель плотностей вероятностей W(xф,

Скачать книгу