Системные человеческие джунгли рисков. В. Б. Живетин
Чтение книги онлайн.
Читать онлайн книгу Системные человеческие джунгли рисков - В. Б. Живетин страница 20
Система А1 перерабатывает Rвх и отдает системе А2 потоки δ(2)n и δ(1)e ресурсов Rвых = Rвых(Евых, Jвых, mвых). При этом на систему А1 и А2 действует внешняя среда посредством возмущающих факторов.
Рис. 1.18
Джунгли возможностей и потребностей систем А1 и А2 реализуются: 1) различными структурно-функциональными свойствами людей, наполняющих общество, которые изменяются во времени, в том числе с изменением функциональных свойств социальной системы А2; 2) внутренними возмущающими факторами рисков V(А1), V(А2); 3) внешними возмущающими факторами рисков W(А1), W(А2), создаваемыми внешней средой.
Внешние возмущающие факторы в качестве первого приближения при математическом описании можно представить в виде совокупности некоторых детерминированных или стохастических функций времени, которые обозначим (у1,…,ут). На эти переменные непосредственного воздействия оказать мы не можем. Значимость переменных факторов yi = yi(t) внешней среды, обладающих неопределенностью влияния и временем появления, резко повышается, если учитываются изменения ресурсов динамической системы. При этом главное условие успеха управления динамических систем А1, А2 связано с учетом влияния внешней среды, поскольку граница между средой и динамическими системами является проницаемой.
Одним из условий самосохранения динамических систем А1, А2 является приспосабливаемость к непрерывным изменениям внутренней и внешней сред. При формировании математической модели необходимо учитывать следующее:
– динамические системы А1, А2 имеют структуры, включающие взаимосвязанные подсистемы;
– осуществляется учет влияния внешней среды на достижение поставленной цели;
– управленческие решения принимаются интеллектуально-энергетическими системами (подсистемы 1, 2, 4) на основе изучения и учета всей совокупности ситуационных факторов.
Требования к математической модели:
– должна содержать средства анализа изменения энергетических потоков и полей при введении различных управляющих воздействий согласно функциональным свойствам подсистем;
– должна позволять прогнозировать изменения энергетического потенциала в различные моменты времени;
– количество выходных параметров должно быть достаточным для анализа, а также оценки опасных состояний.
Математическая модель процесса формирования энергетических потоков динамической системы
Для построения уравнения функционирования динамической системы воспользуемся балансом энергетических потоков, поступающих и отдаваемых динамической системой в некоторый момент времени t [4]. Будем считать, что как сама энергия Е(t), формируемая динамической системой, так и потоки на входе и выходе системы непрерывны и дифференцируемы