HPLC optimal einsetzen. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу HPLC optimal einsetzen - Группа авторов страница 22
13 Tang, D.-Q., Li, Z., Xiao-Xing, Y., Choon, N.O. (2016). HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS (Review). Mass Spectrom. Rev. 35: 574–600.
14 King, A.M., Mullin L.G., Wilson, I.D. et al. (2019). Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC-MS and ion mobility enabled HILIC-MS. Metabolomics 15: 17.
15 Kahsay, G., Song, H., Van Schepdael, A., Cabooter, D. und Adams E. (2014). Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J. Pharm. Biomed. Anal. 87: 142–154.
16 Lange, M. und Fedorova, M. (2020). Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal. Bioanal. Chem. 412: 3573–3584.
17 Machairas, G., Panderi, I. und Geballa- Koukoula, A. (2018). Development and validation of a hydrophilic interaction liquid chromatography method for the quantitation of impurities in fixed-dose combination tablets containing rosuvastatin and metformin. Talanta 183:131–141.
18 Bieber, S., Greco, G., Grosse, S. und Letzel, T. (2017). RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal. Chem. 89: 7907–7914.
19 Salas, D., Borrull, F., Fontanals, N. und Marce, R.M. (2017). Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. TrAC Trends Anal. Chem. 94: 141–149.
20 Sentkowska, A., Biesaga, M. und Pyrzynska, K. (2016). Application of hydrophilic interaction liquid chromatography for the quantification of flavonoids in Genista tinctoria extract. J. Anal. Methods Chem. Vol. 3789348, https://dx.doi.org/10.1155/2016/3789348.
21 Shu, Q., Li, M., Shu, L. et al. (2020). Large-scale identification of N-linked intact glycopeptides in human serum using HILIC enrichment and spectral library search. Molec. Cell. Proteom. 19 (4): 672–689.
22 Fekete, S. und Guillarme, D. (2014). Ultra-high-performance liquid chromatography for the characterization of therapeutic proteins. TrAC Trends Anal. Chem. 63: 76–84.
23 Camperi, J., Combés, A., Fournier, T. et al. (2020). Analysis of the human chorionic gonadotropin protein at the intact level by HILIC-MS and comparison with RPLC-MS. Anal. Bioanal. Chem. 412: 4423–4432 https://doi.org/10.1007/s00216-020-02684-8.
24 Schulze, B., Bader, T., Seitz, W. et al. (2020). Column bleed in the analysis of highly polar substances: An over looked aspect in HRMS. Anal. Bioanal. Chem. 412: 4837–4847, https://doi.org/10.1007/s00216-020-02387-0.
25 Mueller, K., Zahn, D., Froemel, T. et al. (2020). Matrix effects in the analysis of polar organic water contaminants with HILIC-ESI-MS. Anal. Bioanal. Chem. 412: 4867–4879 https://doi.org/10.1007/s00216-020-02548-1.
26 Boulard, L., Dierkes, G. und Ternes, T. (2018). Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: Benefits and limitations. J. Chromatogr. A 1535: 27–43.
3
Optimierungsstrategien in der LC-MS-Methodenentwicklung
Markus M. Martin 1
1 Thermo Fisher Scientific, Germering, Deutschland
3.1 Einführung
Mit der zunehmenden Verbreitung von massenspektrometrischen Detektionssystemen jenseits der innovationstragenden Forschungslabore hinein in die Routineanalytik von Qualitätskontrolllaboratorien steigt auch der Bedarf an neu entwickelten HPLC-MS-Methoden. Heutige Massenspektrometer für den Routinebereich haben erhebliche Fortschritte beim Bedienkomfort gemacht und den Ruf einer Diva für Experten hinter sich gelassen, was ihre Benutzung auch durch weniger versierte Anwender:innen deutlich vereinfacht. Daneben existiert nach wie vor das zum Teil seit Jahrzehnten ehern festgeschriebene Regelwerk der verschiedenen Arzneimittelbücher und Pharmakopöen, die bis heute HPLC-Methoden beschreiben, welche mit den Anforderungen der Massenspektrometrie nicht kompatibel sind. Im Laboralltag stellen sich daher häufig zwei unterschiedliche Aufgaben: Neben die Entwicklung und Validierung neuer HPLC-MS-Methoden tritt oft die Herausforderung, eine etablierte Methode MS-gängig zu machen. Beide Aspekte sollen hinsichtlich ihrer Vorgehensweise und Optimierung diskutiert werden. Welche HPLC-MS-Systeme und -Methoden sich bevorzugt für welches Ziel einer Analytik eignen und wie man sie bestmöglich einsetzt, geht über den Rahmen der Optimierungsbetrachtung hinaus und wird in weiterführender Literatur behandelt [1]. Bei der Betrachtung der MS- relevanten Aspekte beschränkt sich dieses Kapitel auf Elektrosprayionisierung (ESI) und Chemische Ionisierung bei Atmosphärendruck (APCI) als die häufigsten Ionisierungsverfahren der HPLC-MS-Kopplung.
3.2 Methodenneuentwicklung für HPLC-MS-Trennungen
Die Herangehensweise bei der Entwicklung einer neuen LC-MS-Trennmethode unterscheidet sich nicht grundlegend von derjenigen für klassische LC-Methoden. Allerdings gilt es, eine UHPLC-Trennung unter Berücksichtigung der besonderen Anforderungen zu entwickeln, die durch die Massenspektrometrie diktiert werden. Parallel dazu wird das Massenspektrometer in seinen Einstellparametern zur Io- nenquelle, der Ionentransferoptik sowie dem jeweiligen Massenanalysator auf die zu bestimmenden Analyten optimiert. Diese beiden Schritte geschehen in der Regel zunächst getrennt voneinander. Anschließend koppelt man die UHPLC mit der Massenspektrometrie und bestimmt den Einfluss von Matrixeffekten, bevor man abschließend die gekoppelte UHPLC-MS-Methode einer Tauglichkeitsprüfung bzw. Validierung unterzieht.
Daraus ergibt sich folgende Abfolge:
1 1. Ausarbeitung der LC-Trennung (offline)
2 2. Optimierung der massenspektrometrischen Parameter (offline)
3 3. Verifizierung der massenspektrometrischen Einstellungen und Bestimmung von Matrixeffekten
4 4. Finale Kopplung mit anschließender Methodenvalidierung
Auf die einzelnen Teilschritte soll im Folgenden näher eingegangen werden. Wie diese ausführliche Optimierung bei Bedarf kombiniert und automatisiert werden kann, wird im Abschn. 3.2.5 kurz umrissen.
3.2.1 Optimierung der LC-Trennung
Auf die Optimierung einer HPLC-Trennung im Allgemeinen wird in diesem Buch bereits an verschiedenen Stellen eingegangen (siehe