Physikalische Chemie. Peter W. Atkins

Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 84

Автор:
Жанр:
Серия:
Издательство:
Physikalische Chemie - Peter W. Atkins

Скачать книгу

q, w, ΔH und ΔU für die Verdampfung von 0.50 mol dieser Flüssigkeit bei 250 K und 750 Torr.

      32 A2.16b Für eine Flüssigkeit wurde gemessen. Berechnen Sie q, w, ΔH und ΔU für die Verdampfung von 0.75 mol dieser Flüssigkeit bei 260 K und 765 Torr.

      33 A2.17a Berechnen Sie die Gitterenthalpie von Srl2 aus den folgenden Daten:ProzessΔH/(kJ mol–1)Sublimation von Sr(s)+164lonisation von Sr(g) zu Sr2+ (g)+1626Sublimation von I2(s)+62Dissoziation von I2(g)+151Elektronenanlagerung an I(g)–304Bildung von SrI2(s) aus Sr(s) und I2(s)–558

      34 A2.17b Berechnen Sie die Gitterenthalpie von MgBr2 aus den folgenden Daten:ProzessΔH/(kJ mol–1)Sublimation von Mg(s)+148Ionisation von Mg(g) zu Mg2+(g)+2187Verdampfung von Br2(l)+31Dissoziation von Br2(g)+193Elektronenanlagerung an Br(g)–331Bildung von MgBr2(s) aus Mg(s) und Br2(l)–524

      35 A2.18a Berechnen Sie die Standardverbrennungsenthalpie von Ethylbenzol aus seiner Standardbildungsenthalpie von – 12.5 kJmol–1.

      36 A2.18b Berechnen Sie die Standardverbrennungsenthalpie von Phenol aus seiner Standardbildungsenthalpie von –165.0 kJ mol–1.

      37 A2.19a Die Standardverbrennungsenthalpie von Cyclopropan bei 25 °C beträgt –2091 kJ mol–1. Berechnen Sie daraus und unter Verwendung der Bildungsenthalpien von CO2(g) und H2O(l) die Bildungsenthalpie von Cyclopropan. Berechnen Sie die Enthalpie der Isomerisierung von Cyclopropan zu Propen, wenn die Standardbildungsenthalpie von Propen +20.42 kJ mol–1 beträgt.

      38 A2.19b Bestimmen Sie ΔBH⦵ von Diboran, B2H6(g), bei 298 K aus folgenden Angaben:(1) B2H6(g) + 3O2(g) → B2O3(s) + 3H2O(g),ΔRH⦵ = – 2036 kJ mol–(2)(3)

      39 A2.20a Bei Verbrennung von 120 mg Naphthalin, C10H8(s), stieg die Temperatur eines Bombenkalorimeters um 3.05 K. Berechnen Sie die Wärmekapazität des Kalorimeters. Welchen Temperaturanstieg misst man bei Verbrennung von 10 mg Phenol, C6H5OH(s), unter denselben Bedingungen?

      40 A2.20b Bei Verbrennung von 2.25 mg Anthracen, C14H10(s), stieg die Temperatur eines Bombenkalorimeters um 1.35 K. Berechnen Sie die Wärmekapazität des Kalorimeters. Welchen Temperaturanstieg misst man bei Verbrennung von 135 mg Phenol, C6H5OH(s), unter denselben Bedingungen? Die Verbrennungsenthalpie von Anthracen beträgt –7061 kJ mol–1.

      41 A2.21a Zu berechnen ist die Standardlösungsenthalpie von AgCl(s) in Wasser aus den Bildungsenthalpien des Feststoffs und der hydratisierten Ionen.

      42 A2.21b Zu berechnen ist die Standardlösungsenthalpie von AgBr(s) in Wasser aus den Bildungsenthalpien des Feststoffs und der hydratisierten Ionen.

      43 A2.22a Die Standardreaktionsenthalpie für den Zerfall des gelben Komplexes H3NSO2(s) in NH3(g) und SO2(g) beträgt + 40 kJ mol–1. Wie groß ist die Standardbildungsenthalpie des Komplexes H3NSO2(s)?

      44 A2.22b Berechnen Sie die Enthalpie der Umwandlung von Graphit in Diamant; gegeben seien die Standardverbrennungsenthalpien von Graphit, –393.51 kJ mol–1, und von Diamant, –395.41 kJ mol–1.

      45 A2.23a Berechnen Sie unter Verwendung der Reaktionen (1) und (2) (a) ΔRH⦵ und ΔRU⦵ für Reaktion (3), (b) ΔBU⦵ von H2O(g) und HCl(g) jeweils bei 298 K. Alle Gase sollen sich ideal verhalten.(1) H2(g) + Cl2(g) → 2HCl(g), ΔRH⦵ = – 184.62 kJ mol–1(2) 2H2(g) + O2(g) → 2H2O(g), ΔRH⦵ = – 184.62 kJ mol–1(3) 4 HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g).

      46 A2.23b Berechnen Sie unter Verwendung der Reaktionen (1) und (2) (a) ΔRH⦵ und ΔRU⦵ für Reaktion (3), (b) ΔBH⦵ von H2O(g) und Hl(g) jeweils bei 298 K. Alle Gase sollen sich ideal verhalten.(1) H2(g) + I2(s) → 2 HI(g), ΔRH⦵ = + 52.96 kJ mol–1(2) 2H2(g) + O2(g) → 2H2O(g), ΔRH⦵ = – 483.64 kJ mol–1(3) 4 HI(g) + O2(g) → 2 I2(s) + 2H2O(g)

      47 A2.24a Berechnen Sie ΔRH⦵ für die Reaktion C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(g), für die ΔRU⦵ ist.

      48 A2.24b Berechnen Sie ΔRH⦵ für die Reaktion 2 C6H5COOH(s) + 13O2(g) → 12CO2(g) + 6H2O(g), für die ΔRH⦵(298 K) = – 772.7 kJ mol–1 ist.

      49 A2.25a Berechnen Sie die Standardbildungsenthalpie von (a) KClO3(s) aus der Standardbildungsenthalpie von KCl und (b) NaHCO3(s) aus den Bildungsenthalpien von CO2 und NaOH. Folgende Daten sind gegeben:2KClO3(s) → 2 KCl(s) + 3O2(g), ΔRH⦵ = – 89.4 kJ mol–1NaOH(s) + CO2(g) → NaHCO3(s), ΔRH⦵ = – 127.5 kJ mol–1

      50 A2.25b Berechnen Sie die Standardbildungsenthalpie von NOCl(g) aus der Standardbildungsenthalpie von NO (siehe Tabelle 2-8).ΔRH⦵ der Reaktion 2 NOCl(g) → 2NO(g) + Cl2(g) beträgt +75.5 kJ mol–1.

      51 A2.26a Sagen Sie mithilfe der Daten aus Tabelle 2-8 die Standardreaktionsenthalpie der Reaktion 2 NO2(g) → N2O4(g) bei 100 °C aus dem Wert bei 25 °C voraus.

      52 A2.26b Sagen Sie mithilfe der Daten aus Tabelle 2-8 die Standardreaktionsenthalpie der Reaktion 2 H2(g) + O2(g) → 2H2O(l) bei 100°C aus dem Wert bei 25 °C voraus.

      53 A2.27a BerechnenSie ausden Daten in Tabelle 2-8 ΔRH⦵ und ΔRU⦵ bei (a) 298 K und (b) 378 K für die Reaktion C(Graphit) + H2O(g) → CO(g) + H2(g). Alle Wärmekapazitäten sollen im betrachteten Temperaturbereich nicht von der Temperatur abhängen.

      54 A2.27b Berechnen Sie ΔRH⦵ und ΔRU⦵ bei 298 K und ΔRH⦵ bei 348 K für die Hydrierung von Ethin zu Ethen; verwenden Sie dazu die Verbrennungsenthalpien und Wärmekapazitäten aus den Tabellen 2-6 und 2-8. Nehmen Sie die Wärmekapazitäten im betrachteten Temperaturbereich als konstant an.

      55 A2.28a Berechnen Sie ΔRH⦵ für die Reaktion Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s) mithilfe der Angaben aus Tabelle 2-8 im Tabellenanhang.

      56 A2.28b Berechnen Sie ΔRH⦵ für die Reaktion NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3 (aq) mithilfe der Angaben aus Tabelle 2-8 im Tabellenanhang.

      57 A2.29a Schreiben Sie einen thermodynamischen Kreisprozess zur Bestimmung der Hydratationsenthalpie von Mg2+-Ionen auf. Gegeben sind folgende Daten: Sublimationsenthalpie von Mg(s) +167.2 kJ mol–1, erste bzw. zweite lonisierungsenergie von Mg(g) +7.646/ + 15.035 eV, Dissoziationsenthalpie von Cl2(g) +241.6 kJ mol–1, Elektronenaffinität von Cl(g) – 3.78 eV, Lösungsenthalpie von MgCl2(s) –150.5 kJ mol–1, Hydratationsenthalpie von Cl–(g)–383.7 kJ mol–1.

      58 A2.29b Schreiben Sie einen thermodynamischen Kreisprozess zur Bestimmung der Hydratationsenthalpie von Ca2+-Ionen auf. Gegeben sind folgende Daten: Sublimationsenthalpie von Ca(s) +178.2 kJ mol–1, erste bzw. zweite lonisierungsenergie von Ca(g) +598.7/ + 1145 kJ mol–1, Verdampfungsenthalpie von Br(l) +30.91 kJ mol–1, Dissoziationsenthalpie von Br2(g) +192.9 kJ mol–1, Elektronenaffinität von Br(g) –331.0 kJ mol–1, Lösungsenthalpie von CaBr2(s) –103.1 kJ mol–1, Hydratationsenthalpie von Br–(g) –337.0kJ mol–1.

      59 A2.30a In einer Kältemaschine wurde ein Freon adiabatisch von 32 atm und 0°C auf 1.00 atm entspannt, die Temperatur sank dabei um 22 K. Berechnen Sie den Joule–Thomson-Koeffizienten μ bei 0°C. Die Temperaturabhängigkeit von μ im gegebenen Bereich soll vernachlässigt werden.

      60 A2.30b Ein Dampf

Скачать книгу