Physikalische Chemie. Peter W. Atkins

Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 106

Автор:
Жанр:
Серия:
Издательство:
Physikalische Chemie - Peter W. Atkins

Скачать книгу

Gase kann man auch spektroskopisch gewonnene Daten heranziehen (Kapitel 16).

      Das Verhalten der Stoffe wird sowohl durch den Ersten als auch durch den Zweiten Hauptsatz der Thermodynamik beschrieben. Die ganze Leistungsfähigkeit der Thermodynamik zur Lösung realer Probleme zeigt sich aber erst durch die Verbindung beider Hauptsätze.

      ■ Das Wichtigste in Kürze: Die Fundamentalgleichung, eine Kombination aus Erstem und Zweiten Hauptsatz, liefert eine Beziehung für die Änderung der Inneren Energie bei einer Volumen- und Entropieänderung des Systems.

      Wie bereits diskutiert, kann man den Ersten Hauptsatz der Thermodynamik in der Form dU = dq + dw schreiben. Für eine reversible Zustandsänderung in einem geschlossenen System (in dem keine Änderung der Zusammensetzung stattfinden darf) gilt, wenn keine Arbeitsform außer Volumenarbeit auftritt, dwrev = – p dV und (gemäß der Definition der Entropie) dqrev = T dS mit p als Druck und T als Temperatur des Systems. Für eine reversible Zustandsänderung in einem geschlossenen System ergibt sich damit

      (3-46)image

      Die Tatsache, dass man die Fundamentalgleichung auf reversible genauso wie auf irreversible Zustandsänderungen anwenden kann, mag im ersten Moment verwirren. Die Begründung ist, dass zwar T dS = dq und – p dV = dw nur im reversiblen Fall gelten, während für irreversible Prozesse die clausiussche Ungleichung T dS > dq und – p dV > dw zutrifft. Die Summe aus dw und dq jedoch ist immer gleich der Summe aus T dS und – p dV (vorausgesetzt, die Zusammensetzung des Systems ändert sich nicht).

      ■ Das Wichtigste in Kürze: Beziehungen zwischen thermodynamischen Eigenschaften leitet man dadurch her, dass man vorhandene thermodynamische und mathematische Beziehungen kombiniert. (a) Die Maxwell-Beziehungen sind eine Gruppe von Ausdrücken zwischen Ableitungen thermodynamischer Eigenschaften, die darauf beruhen, dass die Änderungen der Eigenschaften totale Differenziale sind. (b) Aus den Maxwell-Beziehungen kann man die thermodynamische Zustandsgleichung herleiten und angeben, wie die Innere Energie einer Substanz vom Volumen abhängt.

      Gleichung (3-46) zeigt, dass die Innere Energie eines geschlossenen Systems in einfacher Weise von S und V abhängt (dU ∝ dS und dU ∝ dV); wegen dieser Proportionalitäten ist es zweckmäßig, U als Funktion von S und V zu behandeln. Man könnte U ebenso als Funktion von anderen Variablen schreiben, etwa S und p oder T und V, weil zwischen allen diesen Variablen mathematische Zusammenhänge bestehen. Die Auswahl von U(S, V) bietet sich jedoch durch den einfachen Aufbau der Fundamentalgleichung an.

      Mathematisch gesehen ergibt sich aus dieser Voraussetzung, dass wir infinitesimale Änderungen der Inneren Energie dU als Funktion der Änderungen dS und dV formulieren können:

      Die beiden partiellen Ableitungen entsprechen den Steigungen der Kurven der Funktionen U(S) bzw. U(V). Aus dem Vergleich dieses Ausdrucks mit der thermodynamischen Beziehung in Gl. (3-46) ergibt sich für ein System mit konstanter Zusammensetzung

       ■ Kommentar 3-2

      Die erste dieser beiden Gleichungen ist eine rein thermodynamische Definition der Temperatur als Verhältnis der Änderungen von Innerer Energie (Erster Hauptsatz) bzw. Entropie (Zweiter Hauptsatz) eines geschlossenen Systems mit konstantem Volumen. Damit haben wir begonnen, Beziehungen zwischen den Eigenschaften eines Systems herzuleiten; im Folgenden werden wir sehen, welche weiteren (manchmal unerwarteten) Möglichkeiten die Thermodynamik hierzu bietet.

      Die Maxwell-Beziehungen

      Wir haben damit eine Beziehung zwischen Größen hergeleitet, deren Zusammenhang ansonsten durchaus nicht offensichtlich ist.

Aus U: image
Aus H:

Скачать книгу