Quantenmechanische Grundlagen der Molekülspektroskopie. Max Diem

Чтение книги онлайн.

Читать онлайн книгу Quantenmechanische Grundlagen der Molekülspektroskopie - Max Diem страница 19

Автор:
Жанр:
Серия:
Издательство:
Quantenmechanische Grundlagen der Molekülspektroskopie - Max Diem

Скачать книгу

rel="nofollow" href="#fb3_img_img_add78000-198a-5a3e-9260-dc7bb262d790.jpg" alt="images"/>

      die für die harmonische Schwingung eines zweiatomigen Moleküls gilt, und

      Aufgrund der Schwierigkeiten beim Lösen von Gleichungen wie (2.15) und (2.16) wird für das erste Beispiel eines quantenmechanischen Systems eine viel einfachere potenzielle Energiefunktion verwendet, was zu dem bekannten ,,Teilchen-im-Kasten“-Modell führt. Hier wird die Potenzialfunktion einfach durch einen rechteckigen Kasten angenähert. Das Teilchen im Kasten (TiK) ist ein künstliches Beispiel, aber es ist pädagogisch äußerst nützlich und bietet einfache Differenzialgleichungen sowie reale physikalische Anwendungen, siehe Abschn. 2.5.

      Wirkliche quantenmechanische Systeme neigen dazu, mathematisch ziemlich kompliziert zu sein, aufgrund der Komplexität der im vorherigen Abschnitt erwähnten Differenzialgleichungen. Daher wird hier ein einfaches Modellsystem vorgestellt, um die in den Abschn. 2.1 und 2.2 aufgeführten Prinzipien der Quantenmechanik zu veranschaulichen. Dieses Modellsystem ist das sogenannte Teilchen im Kasten (im Folgenden als ,,TiK“ bezeichnet), bei dem der Ausdruck für die potenzielle Energie sehr vereinfacht ist, das aber trotzdem weitreichende Analogien zu wirklichen Systemen aufweist. Dieses Modell ist sehr lehrreich, da es detailliert zeigt, wie der quantenmechanische Formalismus in einer Situation funktioniert, die ausreichend einfach ist, um die Berechnungen schrittweise durchzuführen. Gleichzeitig liefert es Ergebnisse, die den Ergebnissen eines wirklichen Systems sehr ähnlich sind. Dies wird später durch den Vergleich der Symmetrie (Parität) der TiK-Wellenfunktionen mit denen des harmonischen Oszillators (Kap. 4) veranschaulicht.

       Definition des Modellsystems

      Das TiK-Modell geht davon aus, dass ein Teilchen, beispielsweise ein Elektron, in ein potenzielles Energiefeld eingebracht wird, das aus zwei unendlich hohen Wänden gebildet wird (siehe Abb. 2.2). Diese Begrenzung (der „Kasten“) hat für 0 ≤ xL die potenzielle Energie null, wobei L die Länge des Kastens ist. Außerhalb des Kastens, d. h. für x < 0 und für x > L, wird angenommen, dass die potenzielle Energie unendlich ist. Sobald sich das Elektron in der Box befindet, hat es keine Chance zu entkommen, und man weiß mit Sicherheit, dass sich das Elektron in dem Kasten befindet.

      Wie bereits erwähnt, wird die Gesamtenergie als die Summe der kinetischen und potenziellen Energie T und V geschrieben:

      (2.17) images

      Nach wie vor wird die kinetische Energie des Teilchens als

      (2.3) images

      angegeben, wobei m die Masse des Elektrons ist. Ersetzt man den klassischen Impuls in (1.14) durch den quantenmechanischen Impulsoperator,

      (2.2) images

      kann der kinetische Energieoperator als

      (2.4) images

      (2.18) images

      Da die potenzielle Energie außerhalb des Kastens unendlich hoch ist, kann sich das Elektron dort nicht befinden, und die Diskussion wird sich fortan mit dem Inneren des Kastens befassen. Somit kann man den gesamten Hamilton-Operator des Systems als

      angeben. Im Format der linearen Algebra wird dieses Operator-Eigenvektor-Eigenwert-Problem als

       Lösung der Schrödinger-Gleichung für das Teilchen im Kasten

      Gleichung (2.19) als kann wie folgt umgeschrieben werden:

      (2.22) images

Скачать книгу