Physikalische Chemie. Peter W. Atkins

Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 89

Автор:
Жанр:
Серия:
Издательство:
Physikalische Chemie - Peter W. Atkins

Скачать книгу

null sein.

      Übung ME2-3

      Bestätigen Sie, dass d f = 3x2 cos y dxx3 sin y dy ein exaktes Differenzial ist und bestimmen Sie die Funktion f (x, y).

image

      Es ist nun einfach, zu zeigen, dass das Integral über d f wegunabhängig ist. Da d f ein exaktes Differenzial ist, ist das zugehörige Integral von a bis b einfach

image

      Der Wert des Integrals hängt also nur von den Werten der Funktion f an den Integrationsgrenzen ab und nicht vom Weg, entlang dessen das Integral berechnet wird. Wenn d f dagegen kein exaktes Differenzial ist, existiert die Funktion f nicht, sodass dieses Argument nicht mehr gilt. In diesem Fall hängt das Integral über d f in der Tat vom Weg ab, auf dem man die Integration durchführt.

      Ein praktisches Beispiel

      Wir betrachten das nicht exakte Differenzial aus dem zweiten praktischen Beispiel (mit ax2 anstelle von ax3 in der Klammer),

image image image

      Für Weg 2 ist dagegen

image

      Die beiden Integrale sind offensichtlich nicht identisch.

      Übung ME2-4

      Verifizieren Sie, dass die beiden Wege im Fall des exakten Differenzials aus dem ersten praktischen Beispiel tatsächlich denselben Wert ergeben. [In beiden Fällen 16a + 4b.]

      Manchmal kann man ein nicht exaktes Differenzial durch Multiplikation mit einem so genannten integrierenden Faktor in ein exaktes Differenzial verwandeln. Ein Beispiel aus der Physik ist der integrierende Faktor 1/T, der in der Thermodynamik das nicht exakte Differenzial dqrev in das exakte Differenzial dS verwandelt (siehe Kapitel 3).

      Ein praktisches Beispiel

      Wir hatten bereits gesehen, dass das Differenzial d f = 3ax2y dx + (ax2 + 2by) dy nicht exakt ist; dasselbe gilt, wenn wir b = 0 setzen und stattdessen den Ausdruck d f = 3ax2 y dx + ax2 dy betrachten. Diesen Ausdruck multiplizieren wir mit xmyn und setzen xmynd f = d ; wir erhalten so

image

      Nun berechnen wir die beiden folgenden partiellen Ableitungen

image

      Damit das betrachtete Integral exakt ist, müssen diese partiellen Ableitungen gleich sein, es muss also gelten

image

      was wir zu

image

      vereinfachen können. Die einzige von x unabhängige Lösung dieser Gleichung ist n = –1und m = –2; folglich ist

image

      ein exaktes Differenzial. Auf die zuvor beschriebene Weise erhalten wir für die integrierte Form (x, y) = 3ax + a ln y + Konstante.

      Übung ME2-5

      Finden Sie einen integrierenden Faktor der Form xmyn für das nicht exakte Differenzial d f = (2yx3) dx + x dy und bestimmen Sie die integrierte Form f ʹ

      [d f ʹ= x d f, f ʹ= yx2 – (1/5) x5 + Konstante]

      Note

      1 1) Die mit dem Symbol ‡ gekennzeichneten Aufgaben wurden von Charles Trapp, Carmen Giunta und Marshall Cady beigesteuert.

      3

      Der Zweite Hauptsatz der Thermodynamik

      1  3.1 Die Richtung freiwilliger Prozesse

      2  3.1.1 Die Dissipation der Energie

      3  3.1.2 Die Entropie Anwendung 3-1: Kälteerzeugung

      4  3.1.3 Entropieänderungen bei speziellen Prozessen

      5  3.1.4 Der Dritte Hauptsatz der Thermodynamik Anwendung 3-2: Kristallfehler

      6  3.2 Die Beschränkung auf das System

      7  3.2.1 Freie Energi e und Freie Enthalpie

      8  3.2.2 Freie Standardreaktionsenthalpien

Скачать книгу